GM2Calc 2.3.0
|
Namespaces | |
namespace | detail |
namespace | thdm |
Classes | |
class | Config_options |
configuration for the calculation of ![]() | |
class | EInvalidInput |
class | EPhysicalProblem |
class | EReadError |
class | Error |
class | ESetupError |
Spectrum generator was not setup correctly. More... | |
struct | Flip_sign |
class | GM2_slha_io |
class for reading input files and writing SLHA output files More... | |
class | MSSMNoFV_onshell |
contains the MSSMNoFV parameters in the on-shell scheme More... | |
class | MSSMNoFV_onshell_mass_eigenstates |
model class with routines determine masses, mixings and EWSB More... | |
class | MSSMNoFV_onshell_physical |
MSSMNoFV pole masses and corresponding mixings. More... | |
class | MSSMNoFV_onshell_problems |
contains problem and warning flags More... | |
class | MSSMNoFV_onshell_soft_parameters |
contains soft-breaking parameters of the MSSMNoFV model More... | |
class | MSSMNoFV_onshell_susy_parameters |
contains SUSY parameters of the MSSMNoFV model More... | |
class | RAII_save |
Saves value of variable and restores it at destruction. More... | |
class | SM |
class | THDM |
Contains routines to determine the THDM parameters. More... | |
class | THDM_mass_eigenstates |
model class with routines for determing masses and mixinga and EWSB More... | |
class | THDM_parameters |
Contains the parameters of the THDM model. More... | |
class | THDM_problems |
contains problem and warning flags More... | |
Functions | |
double | dilog (double x) noexcept |
Real dilogarithm ![]() | |
std::complex< double > | dilog (const std::complex< double > &z) noexcept |
Complex dilogarithm ![]() | |
double | clausen_2 (double x) noexcept |
Clausen function ![]() | |
template<typename Derived > | |
unsigned | closest_index (double mass, const Eigen::ArrayBase< Derived > &v) |
template<class Derived > | |
bool | is_equal (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< Derived > &b, double precision_goal) |
template<class Derived > | |
bool | is_zero (const Eigen::ArrayBase< Derived > &a, double eps) |
template<int M, int N> | |
void | normalize_to_interval (Eigen::Matrix< double, M, N > &m, double min=-1., double max=1.) |
Normalize each element of the given real matrix to be within the interval [min, max]. | |
template<typename DerivedArray , typename DerivedMatrix > | |
void | move_goldstone_to (int idx, double mass, Eigen::ArrayBase< DerivedArray > &v, Eigen::MatrixBase< DerivedMatrix > &z) |
The element of v, which is closest to mass, is moved to the position idx. | |
template<class Real , int Nsrc, int Ncmp> | |
Eigen::Array< Real, Nsrc - Ncmp, 1 > | remove_if_equal (const Eigen::Array< Real, Nsrc, 1 > &src, const Eigen::Array< Real, Ncmp, 1 > &cmp) |
Returns all elements from src, which are not close to the elements in cmp. | |
template<class Real , int N> | |
void | reorder_vector (Eigen::Array< Real, N, 1 > &v, const Eigen::Array< Real, N, 1 > &v2) |
reorders vector v according to ordering in vector v2 | |
template<class Derived > | |
void | reorder_vector (Eigen::Array< double, Eigen::MatrixBase< Derived >::RowsAtCompileTime, 1 > &v, const Eigen::MatrixBase< Derived > &matrix) |
reorders vector v according to ordering of diagonal elements in mass_matrix | |
template<typename Derived > | |
void | symmetrize (Eigen::MatrixBase< Derived > &m) |
double | F1C (double) noexcept |
![]() | |
double | F2C (double) noexcept |
![]() | |
double | F3C (double) noexcept |
![]() | |
double | F4C (double) noexcept |
![]() | |
double | F1N (double) noexcept |
![]() | |
double | F2N (double) noexcept |
![]() | |
double | F3N (double) noexcept |
![]() | |
double | F4N (double) noexcept |
![]() | |
double | Fb (double, double) noexcept |
![]() | |
double | Fa (double, double) noexcept |
![]() | |
double | G3 (double) noexcept |
![]() | |
double | G4 (double) noexcept |
![]() | |
double | Iabc (double, double, double) noexcept |
![]() | |
double | f_PS (double z) noexcept |
Calculates ![]() | |
double | f_S (double z) noexcept |
Calculates ![]() | |
double | f_sferm (double z) noexcept |
Calculates ![]() | |
double | f_CSl (double z) noexcept |
Calculates Barr-Zee 2-loop function for diagram with lepton loop and charged Higgs and W boson mediators, Eq (60), arxiv:1607.06292, with extra global prefactor z. | |
double | f_CSd (double xu, double xd, double qu, double qd) noexcept |
Eq (61), arxiv:1607.06292, with extra global prefactor xd. | |
double | f_CSu (double xu, double xd, double qu, double qd) noexcept |
Eq (62), arxiv:1607.06292, with extra global prefactor xu. | |
double | F1 (double w) noexcept |
![]() | |
double | F1t (double w) noexcept |
![]() | |
double | F2 (double w) noexcept |
![]() | |
double | F3 (double w) noexcept |
![]() | |
double | FPZ (double x, double y) noexcept |
Barr-Zee 2-loop function with fermion loop and pseudoscalar and Z boson mediators. | |
double | FSZ (double x, double y) noexcept |
Barr-Zee 2-loop function with fermion loop and scalar and Z boson mediators. | |
double | FCWl (double x, double y) noexcept |
Barr-Zee 2-loop function with lepton loop and charge scalar and W boson mediators. | |
double | FCWu (double xu, double xd, double yu, double yd, double qu, double qd) noexcept |
Barr-Zee 2-loop function with up-type quark loop and charge scalar and W boson mediators. | |
double | FCWd (double xu, double xd, double yu, double yd, double qu, double qd) noexcept |
Barr-Zee 2-loop function with down-type quark loop and charge scalar and W boson mediators. | |
double | lambda_2 (double x, double y, double z) noexcept |
Källén lambda function ![]() | |
double | Phi (double x, double y, double z) noexcept |
![]() | |
template<class Real , class Scalar , int M, int N> | |
void | svd_eigen (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > *u, Eigen::Matrix< Scalar, N, N > *vh) |
template<class Real , class Scalar , int N> | |
void | hermitian_eigen (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > *z) |
template<int M, int N, class Real > | |
void | disna (const char &JOB, const Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &D, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &SEP, int &INFO) |
Template version of DDISNA from LAPACK. | |
template<class Real , class Scalar , int M, int N> | |
void | svd_internal (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > *u, Eigen::Matrix< Scalar, N, N > *vh) |
template<class Real , class Scalar , int M, int N> | |
void | svd_errbd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > *u=0, Eigen::Matrix< Scalar, N, N > *vh=0, Real *s_errbd=0, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > *u_errbd=0, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > *v_errbd=0) |
template<class Real , class Scalar , int M, int N> | |
void | svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > &u, Eigen::Matrix< Scalar, N, N > &vh) |
Singular value decomposition of M-by-N matrix m such that. | |
template<class Real , class Scalar , int M, int N> | |
void | svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > &u, Eigen::Matrix< Scalar, N, N > &vh, Real &s_errbd) |
Same as svd(m, s, u, vh) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , class Scalar , int M, int N> | |
void | svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > &u, Eigen::Matrix< Scalar, N, N > &vh, Real &s_errbd, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &u_errbd, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &v_errbd) |
Same as svd(m, s, u, vh, s_errbd) except that approximate error bounds for the singular vectors are returned as well. | |
template<class Real , class Scalar , int M, int N> | |
void | svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s) |
Returns singular values of M-by-N matrix m via s such that (s >= 0).all() . | |
template<class Real , class Scalar , int M, int N> | |
void | svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Real &s_errbd) |
Same as svd(m, s) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , class Scalar , int N> | |
void | diagonalize_hermitian_internal (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > *z) |
template<class Real , class Scalar , int N> | |
void | diagonalize_hermitian_errbd (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > *z=0, Real *w_errbd=0, Eigen::Array< Real, N, 1 > *z_errbd=0) |
template<class Real , class Scalar , int N> | |
void | diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > &z) |
Diagonalizes N-by-N hermitian matrix m so that. | |
template<class Real , class Scalar , int N> | |
void | diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > &z, Real &w_errbd) |
Same as diagonalize_hermitian(m, w, z) except that an approximate error bound for the eigenvalues is returned as well. | |
template<class Real , class Scalar , int N> | |
void | diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > &z, Real &w_errbd, Eigen::Array< Real, N, 1 > &z_errbd) |
Same as diagonalize_hermitian(m, w, z, w_errbd) except that approximate error bounds for the eigenvectors are returned as well. | |
template<class Real , class Scalar , int N> | |
void | diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w) |
Returns eigenvalues of N-by-N hermitian matrix m via w. | |
template<class Real , class Scalar , int N> | |
void | diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Real &w_errbd) |
Same as diagonalize_hermitian(m, w) except that an approximate error bound for the eigenvalues is returned as well. | |
template<class Real , int N> | |
void | diagonalize_symmetric_errbd (const Eigen::Matrix< std::complex< Real >, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > *u=0, Real *s_errbd=0, Eigen::Array< Real, N, 1 > *u_errbd=0) |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< std::complex< Real >, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u) |
Diagonalizes N-by-N complex symmetric matrix m so that. | |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< std::complex< Real >, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u, Real &s_errbd) |
Same as diagonalize_symmetric(m, s, u) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< std::complex< Real >, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u, Real &s_errbd, Eigen::Array< Real, N, 1 > &u_errbd) |
Same as diagonalize_symmetric(m, s, u, s_errbd) except that approximate error bounds for the singular vectors are returned as well. | |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< std::complex< Real >, N, N > &m, Eigen::Array< Real, N, 1 > &s) |
Returns singular values of N-by-N complex symmetric matrix m via s such that (s >= 0).all() . | |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< std::complex< Real >, N, N > &m, Eigen::Array< Real, N, 1 > &s, Real &s_errbd) |
Same as diagonalize_symmetric(m, s) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , int N> | |
void | diagonalize_symmetric_errbd (const Eigen::Matrix< Real, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > *u=0, Real *s_errbd=0, Eigen::Array< Real, N, 1 > *u_errbd=0) |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< Real, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u) |
Diagonalizes N-by-N real symmetric matrix m so that. | |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< Real, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u, Real &s_errbd) |
Same as diagonalize_symmetric(m, s, u) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< Real, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u, Real &s_errbd, Eigen::Array< Real, N, 1 > &u_errbd) |
Same as diagonalize_symmetric(m, s, u, s_errbd) except that approximate error bounds for the singular vectors are returned as well. | |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< Real, N, N > &m, Eigen::Array< Real, N, 1 > &s) |
Returns singular values of N-by-N real symmetric matrix m via s such that (s >= 0).all() . | |
template<class Real , int N> | |
void | diagonalize_symmetric (const Eigen::Matrix< Real, N, N > &m, Eigen::Array< Real, N, 1 > &s, Real &s_errbd) |
Same as diagonalize_symmetric(m, s) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , class Scalar , int M, int N> | |
void | reorder_svd_errbd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > *u=0, Eigen::Matrix< Scalar, N, N > *vh=0, Real *s_errbd=0, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > *u_errbd=0, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > *v_errbd=0) |
template<class Real , class Scalar , int M, int N> | |
void | reorder_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > &u, Eigen::Matrix< Scalar, N, N > &vh) |
Singular value decomposition of M-by-N matrix m such that. | |
template<class Real , class Scalar , int M, int N> | |
void | reorder_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > &u, Eigen::Matrix< Scalar, N, N > &vh, Real &s_errbd) |
Same as reorder_svd(m, s, u, vh) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , class Scalar , int M, int N> | |
void | reorder_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > &u, Eigen::Matrix< Scalar, N, N > &vh, Real &s_errbd, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &u_errbd, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &v_errbd) |
Same as reorder_svd(m, s, u, vh, s_errbd) except that approximate error bounds for the singular vectors are returned as well. | |
template<class Real , class Scalar , int M, int N> | |
void | reorder_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s) |
Returns singular values of M-by-N matrix m via s such that (s >= 0).all() . | |
template<class Real , class Scalar , int M, int N> | |
void | reorder_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Real &s_errbd) |
Same as reorder_svd(m, s) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , int N> | |
void | reorder_diagonalize_symmetric_errbd (const Eigen::Matrix< std::complex< Real >, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > *u=0, Real *s_errbd=0, Eigen::Array< Real, N, 1 > *u_errbd=0) |
template<class Real , int N> | |
void | reorder_diagonalize_symmetric_errbd (const Eigen::Matrix< Real, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > *u=0, Real *s_errbd=0, Eigen::Array< Real, N, 1 > *u_errbd=0) |
template<class Real , class Scalar , int N> | |
void | reorder_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u) |
Diagonalizes N-by-N symmetric matrix m so that. | |
template<class Real , class Scalar , int N> | |
void | reorder_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u, Real &s_errbd) |
Same as reorder_diagonalize_symmetric(m, s, u) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , class Scalar , int N> | |
void | reorder_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u, Real &s_errbd, Eigen::Array< Real, N, 1 > &u_errbd) |
Same as reorder_diagonalize_symmetric(m, s, u, s_errbd) except that approximate error bounds for the singular vectors are returned as well. | |
template<class Real , class Scalar , int N> | |
void | reorder_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s) |
Returns singular values of N-by-N symmetric matrix m via s such that (s >= 0).all() . | |
template<class Real , class Scalar , int N> | |
void | reorder_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s, Real &s_errbd) |
Same as reorder_diagonalize_symmetric(m, s) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , class Scalar , int M, int N> | |
void | fs_svd_errbd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > *u=0, Eigen::Matrix< Scalar, N, N > *v=0, Real *s_errbd=0, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > *u_errbd=0, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > *v_errbd=0) |
template<class Real , class Scalar , int M, int N> | |
void | fs_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > &u, Eigen::Matrix< Scalar, N, N > &v) |
Singular value decomposition of M-by-N matrix m such that. | |
template<class Real , class Scalar , int M, int N> | |
void | fs_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > &u, Eigen::Matrix< Scalar, N, N > &v, Real &s_errbd) |
Same as fs_svd(m, s, u, v) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , class Scalar , int M, int N> | |
void | fs_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > &u, Eigen::Matrix< Scalar, N, N > &v, Real &s_errbd, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &u_errbd, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &v_errbd) |
Same as fs_svd(m, s, u, v, s_errbd) except that approximate error bounds for the singular vectors are returned as well. | |
template<class Real , class Scalar , int M, int N> | |
void | fs_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s) |
Returns singular values of M-by-N matrix m via s such that (s >= 0).all() . | |
template<class Real , class Scalar , int M, int N> | |
void | fs_svd (const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Real &s_errbd) |
Same as fs_svd(m, s) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , int M, int N> | |
void | fs_svd (const Eigen::Matrix< Real, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< std::complex< Real >, M, M > &u, Eigen::Matrix< std::complex< Real >, N, N > &v) |
Singular value decomposition of M-by-N real matrix m such that. | |
template<class Real , int M, int N> | |
void | fs_svd (const Eigen::Matrix< Real, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< std::complex< Real >, M, M > &u, Eigen::Matrix< std::complex< Real >, N, N > &v, Real &s_errbd) |
Same as fs_svd(m, s, u, v) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , int M, int N> | |
void | fs_svd (const Eigen::Matrix< Real, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< std::complex< Real >, M, M > &u, Eigen::Matrix< std::complex< Real >, N, N > &v, Real &s_errbd, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &u_errbd, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &v_errbd) |
Same as fs_svd(m, s, u, v, s_errbd) except that approximate error bounds for the singular vectors are returned as well. | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_symmetric_errbd (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > *u=0, Real *s_errbd=0, Eigen::Array< Real, N, 1 > *u_errbd=0) |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u) |
Diagonalizes N-by-N symmetric matrix m so that. | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u, Real &s_errbd) |
Same as fs_diagonalize_symmetric(m, s, u) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s, Eigen::Matrix< std::complex< Real >, N, N > &u, Real &s_errbd, Eigen::Array< Real, N, 1 > &u_errbd) |
Same as fs_diagonalize_symmetric(m, s, u, s_errbd) except that approximate error bounds for the singular vectors are returned as well. | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s) |
Returns singular values of N-by-N symmetric matrix m via s such that (s >= 0).all() . | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_symmetric (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &s, Real &s_errbd) |
Same as fs_diagonalize_symmetric(m, s) except that an approximate error bound for the singular values is returned as well. | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_hermitian_errbd (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > *z=0, Real *w_errbd=0, Eigen::Array< Real, N, 1 > *z_errbd=0) |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > &z) |
Diagonalizes N-by-N hermitian matrix m so that. | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > &z, Real &w_errbd) |
Same as fs_diagonalize_hermitian(m, w, z) except that an approximate error bound for the eigenvalues is returned as well. | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Eigen::Matrix< Scalar, N, N > &z, Real &w_errbd, Eigen::Array< Real, N, 1 > &z_errbd) |
Same as fs_diagonalize_hermitian(m, w, z, w_errbd) except that approximate error bounds for the eigenvectors are returned as well. | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w) |
Returns eigenvalues of N-by-N hermitian matrix m via w. | |
template<class Real , class Scalar , int N> | |
void | fs_diagonalize_hermitian (const Eigen::Matrix< Scalar, N, N > &m, Eigen::Array< Real, N, 1 > &w, Real &w_errbd) |
Same as fs_diagonalize_hermitian(m, w) except that an approximate error bound for the eigenvalues is returned as well. | |
double | calculate_mb_SM5_DRbar (double mb_mb, double alpha_s, double scale) |
Calculates mb(Q) in the DR-bar scheme in the SM w/ 5 active quark flavours using the approach described in arxiv:hep-ph/0207126 . | |
double | calculate_mt_SM6_MSbar (double mt_pole, double alpha_s_mz, double mz, double scale) noexcept |
Calculates the running top quark MS-bar mass mt(SM(6),Q) at the scale Q. | |
double | calculate_mb_SM6_MSbar (double mb_mb, double mt_pole, double alpha_s_mz, double mz, double scale) noexcept |
Calculates the running bottom quark MS-bar mass mb(SM(6),Q) in the SM(6) at the scale Q. | |
double | calculate_mtau_SM6_MSbar (double mtau_pole, double alpha_em_mz, double scale) noexcept |
Calculates the running tau lepton MS-bar mass mtau(SM(6),Q) in the SM(6) at the scale Q. | |
double | abs_sqrt (double) noexcept |
returns square root of absolute of number | |
int | sign (double) noexcept |
returns sign of real number | |
double | signed_sqr (double) noexcept |
returns square of number, times sign | |
double | signed_abs_sqrt (double) noexcept |
returns square root of absolute of number, times sign | |
template<typename T > | |
T | sqr (T x) noexcept |
returns number squared | |
template<typename T > | |
T | cube (T x) noexcept |
returns number to the third power | |
template<typename T > | |
T | pow3 (T x) noexcept |
returns number to the third power | |
template<typename T > | |
T | pow4 (T x) noexcept |
returns number to the 4th power | |
template<typename T > | |
bool | is_zero (T a, T eps) noexcept |
template<typename T > | |
bool | is_equal (T a, T b, T eps) noexcept |
template<typename T > | |
bool | is_equal_rel (T a, T b, T eps) noexcept |
template<typename T > | |
constexpr RAII_save< T > | make_raii_save (T &var) |
double | calculate_uncertainty_amu_0loop (const THDM &, double, double) |
calculates uncertainty for amu(0-loop) | |
double | calculate_uncertainty_amu_1loop (const THDM &, double, double) |
calculates uncertainty for amu(1-loop) | |
double | calculate_uncertainty_amu_2loop (const THDM &, double, double) |
calculates uncertainty for amu(2-loop) | |
double | calculate_uncertainty_amu_0loop (const MSSMNoFV_onshell &, double) |
calculates uncertainty for amu(0-loop) w/ tan(beta) resummation | |
double | calculate_uncertainty_amu_1loop (const MSSMNoFV_onshell &, double) |
calculates uncertainty for amu(1-loop) w/ tan(beta) resummation | |
double | calculate_amu_1loop_non_tan_beta_resummed (const MSSMNoFV_onshell &model) |
Calculates full 1-loop SUSY contribution to (g-2), Eq (45) of arXiv:hep-ph/0609168. | |
double | calculate_amu_1loop (const MSSMNoFV_onshell &model) |
Calculates full 1-loop SUSY contribution to (g-2), Eq (45) of arXiv:hep-ph/0609168. | |
double | amu1LChi0 (const MSSMNoFV_onshell &model) |
Calculates 1-loop neutralino contribution to (g-2), Eq (2.11a) of arXiv:1311.1775. | |
double | amu1LChipm (const MSSMNoFV_onshell &model) |
Calculates 1-loop chargino contribution to (g-2), Eq (2.11b) of arXiv:1311.1775. | |
Eigen::Array< std::complex< double >, 4, 2 > | n_L (const MSSMNoFV_onshell &model) |
Calculates ![]() ![]() | |
Eigen::Array< std::complex< double >, 4, 2 > | n_R (const MSSMNoFV_onshell &model) |
Calculates ![]() ![]() | |
Eigen::Array< std::complex< double >, 2, 1 > | c_L (const MSSMNoFV_onshell &model) |
Calculates ![]() ![]() | |
Eigen::Array< std::complex< double >, 2, 1 > | c_R (const MSSMNoFV_onshell &model) |
Calculates ![]() ![]() | |
Eigen::Array< double, 2, 1 > | AAC (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
Eigen::Array< double, 4, 2 > | AAN (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
Eigen::Array< double, 2, 1 > | BBC (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
Eigen::Array< double, 4, 2 > | BBN (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
Eigen::Array< double, 4, 2 > | x_im (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
Eigen::Array< double, 2, 1 > | x_k (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | amu1LWHnu (const MSSMNoFV_onshell &model) |
Calculates the 1-loop leading log approximation: Wino–Higgsino, muon-sneutrino, Eq (6.2a) arXiv:1311.1775. | |
double | amu1LWHmuL (const MSSMNoFV_onshell &model) |
Calculates the 1-loop leading log approximation: Wino–Higgsino, left-handed smuon, Eq (6.2b) arXiv:1311.1775. | |
double | amu1LBHmuL (const MSSMNoFV_onshell &model) |
Calculates the 1-loop leading log approximation: Bino–Higgsino, left-handed smuon, Eq (6.2c) arXiv:1311.1775. | |
double | amu1LBHmuR (const MSSMNoFV_onshell &model) |
Calculates the 1-loop leading log approximation: Bino–Higgsino, right-handed smuon, Eq (6.2d) arXiv:1311.1775. | |
double | amu1LBmuLmuR (const MSSMNoFV_onshell &model) |
Calculates the 1-loop leading log approximation: Bino, left-handed smuon, right-handed smuon, Eq (6.2e) arXiv:1311.1775. | |
double | amu1Lapprox_non_tan_beta_resummed (const MSSMNoFV_onshell &model) |
Calculates the full 1-loop leading log approximation, Eq (6.1) arXiv:1311.1775 as it stands, without tan(beta) resummation. | |
double | amu1Lapprox (const MSSMNoFV_onshell &model) |
Calculates the full 1-loop leading log approximation, Eq (6.1) arXiv:1311.1775 but include tan(beta) resummation. | |
double | tan_beta_cor (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | delta_down_lepton_correction (const MSSMNoFV_onshell &model, int gen) |
Calculates ![]() | |
double | delta_mu_correction (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | delta_tau_correction (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | delta_bottom_correction (const MSSMNoFV_onshell &model) |
Returns the ![]() | |
double | calculate_amu_2loop_non_tan_beta_resummed (const MSSMNoFV_onshell &model) |
Calculates best 2-loop SUSY contribution to a_mu without tan(beta) resummation. | |
double | calculate_amu_2loop (const MSSMNoFV_onshell &model) |
Calculates best 2-loop SUSY contribution to a_mu with tan(beta) resummation. | |
double | log_scale (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | delta_g1 (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | delta_yuk_higgsino (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | delta_yuk_bino_higgsino (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | delta_g2 (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | delta_yuk_wino_higgsino (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | delta_tan_beta (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | amu2LWHnu (const MSSMNoFV_onshell &model) |
Calculates 1st line of Eq (6.5) arxiv:1311.1775. | |
double | amu2LWHmuL (const MSSMNoFV_onshell &model) |
Calculates 2nd line of Eq (6.5) arxiv:1311.1775. | |
double | amu2LBHmuL (const MSSMNoFV_onshell &model) |
Calculates 3rd line of Eq (6.5) arxiv:1311.1775. | |
double | amu2LBHmuR (const MSSMNoFV_onshell &model) |
Calculates 4th line of Eq (6.5) arxiv:1311.1775. | |
double | amu2LBmuLmuR (const MSSMNoFV_onshell &model) |
Calculates 5th line of Eq (6.5) arxiv:1311.1775. | |
double | amu2LFSfapprox_non_tan_beta_resummed (const MSSMNoFV_onshell &model) |
Calculates 2-loop leading log approximation for fermion-sfermion loop contributions, Eq (6.5) arxiv:1311.1775. | |
double | amu2LFSfapprox (const MSSMNoFV_onshell &model) |
Calculates 2-loop leading log approximation for fermion-sfermion loop contributions, Eq (6.5) arxiv:1311.1775. | |
double | amu2LChipmPhotonic (const MSSMNoFV_onshell &model) |
Calculates the photonic 2-loop contribution to the 1-loop chargino diagram, Eq (35) arXiv:1003.5820. | |
double | amu2LChi0Photonic (const MSSMNoFV_onshell &model) |
Calculates the photonic 2-loop contribution to the 1-loop neutralino diagram, Eq (36) arXiv:1003.5820. | |
double | tan_alpha (const MSSMNoFV_onshell &model) |
The following functions include resummation of 1/(1 + Delta_mu) within the muon, tau and bottom Yukawa couplings. | |
Eigen::Matrix< std::complex< double >, 3, 3 > | lambda_mu_cha (const MSSMNoFV_onshell &model) |
Calculates ![]() ![]() | |
Eigen::Matrix< std::complex< double >, 2, 2 > | lambda_stop (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
Eigen::Matrix< std::complex< double >, 2, 2 > | lambda_sbot (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
Eigen::Matrix< std::complex< double >, 2, 2 > | lambda_stau (const MSSMNoFV_onshell &model) |
Calculates ![]() | |
double | amu2LaSferm (const MSSMNoFV_onshell &model) |
Calculates 2-loop contribution to amu, where a sfermion loop has been inserted into a 1-loop Standard Model diagram (photonic Barr-Zee diagram ![]() | |
double | amu2LaCha (const MSSMNoFV_onshell &model) |
Calculates 2-loop contribution to amu, where a chargino loop has been inserted into a 1-loop Standard Model diagram (photonic Barr-Zee diagram ![]() | |
double | calculate_uncertainty_amu_0loop (const MSSMNoFV_onshell &model) |
Calculates uncertainty associated with amu(0-loop) including tan(beta) resummation. | |
double | calculate_uncertainty_amu_1loop (const MSSMNoFV_onshell &model) |
Calculates uncertainty associated with amu(1-loop) including tan(beta) resummation. | |
double | calculate_uncertainty_amu_2loop (const MSSMNoFV_onshell &model) |
Calculates uncertainty associated with amu(2-loop) using Eq (4). | |
std::ostream & | operator<< (std::ostream &, const MSSMNoFV_onshell &) |
streaming operator | |
std::ostream & | operator<< (std::ostream &ostr, const MSSMNoFV_onshell_mass_eigenstates &model) |
std::ostream & | operator<< (std::ostream &ostr, const MSSMNoFV_onshell_physical &phys_pars) |
std::ostream & | operator<< (std::ostream &ostr, const MSSMNoFV_onshell_problems &problems) |
std::ostream & | operator<< (std::ostream &ostr, const MSSMNoFV_onshell_soft_parameters &soft_pars) |
std::ostream & | operator<< (std::ostream &ostr, const MSSMNoFV_onshell_susy_parameters &susy_pars) |
std::ostream & | operator<< (std::ostream &, const SM &) |
streaming operator | |
double | calculate_amu_1loop (const THDM &model) |
Calculates full 1-loop contribution to a_mu in the general THDM. | |
double | calculate_amu_2loop_bosonic (const THDM &model) |
Calculates 2-loop bosonic contribution to a_mu in the THDM. | |
double | calculate_amu_2loop_fermionic (const THDM &model) |
Calculates fermionic 2-loop contribution to a_mu in the THDM. | |
double | calculate_amu_2loop (const THDM &model) |
Calculates full 2-loop contribution to a_mu in the general THDM. | |
double | calculate_uncertainty_amu_0loop (const THDM &model) |
Calculates uncertainty associated with amu(0-loop) | |
double | calculate_uncertainty_amu_1loop (const THDM &model) |
Calculates uncertainty associated with amu(1-loop) | |
double | calculate_uncertainty_amu_2loop (const THDM &model) |
Calculates uncertainty associated with amu(2-loop) | |
std::ostream & | operator<< (std::ostream &, const THDM &) |
streaming operator | |
std::ostream & | operator<< (std::ostream &ostr, const THDM_mass_eigenstates &model) |
std::ostream & | operator<< (std::ostream &ostr, const THDM_parameters &pars) |
std::ostream & | operator<< (std::ostream &ostr, const THDM_problems &problems) |
Variables | |
constexpr double | ALPHA_EM_THOMPSON = 1.0/137.035999084 |
constexpr double | DELTA_ALPHA_EM_MZ |
constexpr double | ALPHA_EM_MZ = ALPHA_EM_THOMPSON / (1 - DELTA_ALPHA_EM_MZ) |
constexpr double | ALPHA_S_MZ = 0.1184 |
constexpr double | MH = 125.09 |
constexpr double | MW = 80.385 |
constexpr double | MZ = 91.1876 |
constexpr double | MU = 0.0022 |
constexpr double | MC = 1.28 |
constexpr double | MT = 173.34 |
constexpr double | MD = 0.0047 |
constexpr double | MS = 0.096 |
constexpr double | MBMB = 4.18 |
constexpr double | ME = 0.000510998928 |
constexpr double | MM = 0.1056583715 |
constexpr double | ML = 1.777 |
constexpr double | CKM_THETA12 = 0.229206 |
constexpr double | CKM_THETA13 = 0.003960 |
constexpr double | CKM_THETA23 = 0.042223 |
constexpr double | CKM_DELTA = 0 |
Eigen::Array< double, 2, 1 > gm2calc::AAC | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
This expression is identical to
Definition at line 207 of file gm2_1loop.cpp.
Eigen::Array< double, 4, 2 > gm2calc::AAN | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
This expression is identical to
Definition at line 220 of file gm2_1loop.cpp.
returns square root of absolute of number
Definition at line 23 of file gm2_numerics.cpp.
double gm2calc::amu1Lapprox | ( | const MSSMNoFV_onshell & | model | ) |
Calculates the full 1-loop leading log approximation, Eq (6.1) arXiv:1311.1775 but include tan(beta) resummation.
1-loop leading log approximation
Definition at line 372 of file gm2_1loop.cpp.
double gm2calc::amu1Lapprox_non_tan_beta_resummed | ( | const MSSMNoFV_onshell & | model | ) |
Calculates the full 1-loop leading log approximation, Eq (6.1) arXiv:1311.1775 as it stands, without tan(beta) resummation.
1-loop leading log approximation w/o explicit tan(beta) resummation
Definition at line 361 of file gm2_1loop.cpp.
double gm2calc::amu1LBHmuL | ( | const MSSMNoFV_onshell & | model | ) |
Calculates the 1-loop leading log approximation: Bino–Higgsino, left-handed smuon, Eq (6.2c) arXiv:1311.1775.
1-loop bino–Higgsino, left-handed smuon leading log approximation
Definition at line 304 of file gm2_1loop.cpp.
double gm2calc::amu1LBHmuR | ( | const MSSMNoFV_onshell & | model | ) |
Calculates the 1-loop leading log approximation: Bino–Higgsino, right-handed smuon, Eq (6.2d) arXiv:1311.1775.
1-loop bino–Higgsino, right-handed smuon leading log approximation
Definition at line 321 of file gm2_1loop.cpp.
double gm2calc::amu1LBmuLmuR | ( | const MSSMNoFV_onshell & | model | ) |
Calculates the 1-loop leading log approximation: Bino, left-handed smuon, right-handed smuon, Eq (6.2e) arXiv:1311.1775.
1-loop bino, left-handed smuon–right-handed smuon leading log approximation
Definition at line 338 of file gm2_1loop.cpp.
double gm2calc::amu1LChi0 | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 1-loop neutralino contribution to (g-2), Eq (2.11a) of arXiv:1311.1775.
1-loop neutralino contribution
Definition at line 83 of file gm2_1loop.cpp.
double gm2calc::amu1LChipm | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 1-loop chargino contribution to (g-2), Eq (2.11b) of arXiv:1311.1775.
1-loop chargino contribution
Definition at line 108 of file gm2_1loop.cpp.
double gm2calc::amu1LWHmuL | ( | const MSSMNoFV_onshell & | model | ) |
Calculates the 1-loop leading log approximation: Wino–Higgsino, left-handed smuon, Eq (6.2b) arXiv:1311.1775.
1-loop wino–Higgsino, left-handed smuon leading log approximation
Definition at line 288 of file gm2_1loop.cpp.
double gm2calc::amu1LWHnu | ( | const MSSMNoFV_onshell & | model | ) |
Calculates the 1-loop leading log approximation: Wino–Higgsino, muon-sneutrino, Eq (6.2a) arXiv:1311.1775.
1-loop wino–Higgsino, muon-sneutrino leading log approximation
Definition at line 272 of file gm2_1loop.cpp.
double gm2calc::amu2LaCha | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 2-loop contribution to amu, where a chargino loop has been inserted into a 1-loop Standard Model diagram (photonic Barr-Zee diagram
2-loop 2L(a) chargino/neutralino contribution
Definition at line 635 of file gm2_2loop.cpp.
double gm2calc::amu2LaSferm | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 2-loop contribution to amu, where a sfermion loop has been inserted into a 1-loop Standard Model diagram (photonic Barr-Zee diagram
2-loop 2L(a) sfermion contribution
Definition at line 584 of file gm2_2loop.cpp.
double gm2calc::amu2LBHmuL | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 3rd line of Eq (6.5) arxiv:1311.1775.
Definition at line 285 of file gm2_2loop.cpp.
double gm2calc::amu2LBHmuR | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 4th line of Eq (6.5) arxiv:1311.1775.
Definition at line 296 of file gm2_2loop.cpp.
double gm2calc::amu2LBmuLmuR | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 5th line of Eq (6.5) arxiv:1311.1775.
Definition at line 307 of file gm2_2loop.cpp.
double gm2calc::amu2LChi0Photonic | ( | const MSSMNoFV_onshell & | model | ) |
Calculates the photonic 2-loop contribution to the 1-loop neutralino diagram, Eq (36) arXiv:1003.5820.
2-loop photonic neutralino contribution
Definition at line 383 of file gm2_2loop.cpp.
double gm2calc::amu2LChipmPhotonic | ( | const MSSMNoFV_onshell & | model | ) |
Calculates the photonic 2-loop contribution to the 1-loop chargino diagram, Eq (35) arXiv:1003.5820.
2-loop photonic chargino contribution
Definition at line 350 of file gm2_2loop.cpp.
double gm2calc::amu2LFSfapprox | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 2-loop leading log approximation for fermion-sfermion loop contributions, Eq (6.5) arxiv:1311.1775.
2-loop fermion/sfermion contribution (approximation)
Includes tan(beta) resummation
Definition at line 339 of file gm2_2loop.cpp.
double gm2calc::amu2LFSfapprox_non_tan_beta_resummed | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 2-loop leading log approximation for fermion-sfermion loop contributions, Eq (6.5) arxiv:1311.1775.
2-loop fermion/sfermion contribution (approximation) w/o tan(beta) resummation
No tan(beta) resummation
Definition at line 318 of file gm2_2loop.cpp.
double gm2calc::amu2LWHmuL | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 2nd line of Eq (6.5) arxiv:1311.1775.
Definition at line 274 of file gm2_2loop.cpp.
double gm2calc::amu2LWHnu | ( | const MSSMNoFV_onshell & | model | ) |
Calculates 1st line of Eq (6.5) arxiv:1311.1775.
Definition at line 263 of file gm2_2loop.cpp.
Eigen::Array< double, 2, 1 > gm2calc::BBC | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Definition at line 230 of file gm2_1loop.cpp.
Eigen::Array< double, 4, 2 > gm2calc::BBN | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Definition at line 240 of file gm2_1loop.cpp.
Eigen::Array< std::complex< double >, 2, 1 > gm2calc::c_L | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
This expression is the complex conjugate of Eq. (50) of arXiv:hep-ph/0609168.
Definition at line 183 of file gm2_1loop.cpp.
Eigen::Array< std::complex< double >, 2, 1 > gm2calc::c_R | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
This expression is equal to Eq. (51) of arXiv:hep-ph/0609168.
Definition at line 194 of file gm2_1loop.cpp.
double gm2calc::calculate_amu_1loop | ( | const MSSMNoFV_onshell & | model | ) |
Calculates full 1-loop SUSY contribution to (g-2), Eq (45) of arXiv:hep-ph/0609168.
calculates full 1-loop SUSY contributions to (g-2) in the MSSM (w/ tan(beta) resummation)
This function assumes that the Yukawa coupling is defined according to arXiv:1504.05500, Eq. (13) and footnote 2. Therefore, this function uses tan(beta) resummation in the Yukawa coupling.
Definition at line 74 of file gm2_1loop.cpp.
Calculates full 1-loop contribution to a_mu in the general THDM.
calculates full 1-loop contributions to a_mu in the general THDM
model | THDM model parameters, masses and mixings |
Definition at line 39 of file gm2_1loop.cpp.
double gm2calc::calculate_amu_1loop_non_tan_beta_resummed | ( | const MSSMNoFV_onshell & | model | ) |
Calculates full 1-loop SUSY contribution to (g-2), Eq (45) of arXiv:hep-ph/0609168.
calculates full 1-loop SUSY contributions to (g-2) in the MSSM (no tan(beta) resummation)
This function re-defines the muon Yukawa coupling in terms of the tree-level relation with the muon pole mass, i.e.
Definition at line 57 of file gm2_1loop.cpp.
double gm2calc::calculate_amu_2loop | ( | const MSSMNoFV_onshell & | model | ) |
Calculates best 2-loop SUSY contribution to a_mu with tan(beta) resummation.
calculates best 2-loop SUSY contributions to a_mu in the MSSM (with tan(beta) resummation)
Definition at line 111 of file gm2_2loop.cpp.
Calculates full 2-loop contribution to a_mu in the general THDM.
calculates full 2-loop contributions to a_mu in the general THDM
model | THDM model parameters, masses and mixings |
Definition at line 94 of file gm2_2loop.cpp.
Calculates 2-loop bosonic contribution to a_mu in the THDM.
calculates bosonic 2-loop contributions to a_mu in the general THDM
model | THDM model parameters, masses and mixings |
Definition at line 31 of file gm2_2loop.cpp.
Calculates fermionic 2-loop contribution to a_mu in the THDM.
calculates fermionic 2-loop contributions to a_mu in the general THDM
model | THDM model parameters, masses and mixings |
Definition at line 57 of file gm2_2loop.cpp.
double gm2calc::calculate_amu_2loop_non_tan_beta_resummed | ( | const MSSMNoFV_onshell & | model | ) |
Calculates best 2-loop SUSY contribution to a_mu without tan(beta) resummation.
calculates best 2-loop SUSY contributions to a_mu in the MSSM (no tan(beta) resummation)
This function re-defines the muon Yukawa coupling in terms of the tree-level relation with the muon pole mass, i.e.
Definition at line 95 of file gm2_2loop.cpp.
Calculates mb(Q) in the DR-bar scheme in the SM w/ 5 active quark flavours using the approach described in arxiv:hep-ph/0207126 .
calculates mb(Q) DR-bar
mb_mb | mb(mb) MS-bar in SM w/ 5 active quark flavours |
alpha_s | alpha_s MS-bar in SM w/ 5 quark flavours at scale Q |
scale | renormalization scale Q |
Definition at line 202 of file gm2_mf.cpp.
|
noexcept |
Calculates the running bottom quark MS-bar mass mb(SM(6),Q) in the SM(6) at the scale Q.
calculates mb(Q) MS-bar in the SM(6)
mb_mb | bottom quark MS-bar mass mb(mb) in the SM(5) |
mt_pole | top quark pole mass |
alpha_s_mz | strong coupling at the scale mz |
mz | Z boson pole mass |
scale | renormalization scale |
Definition at line 262 of file gm2_mf.cpp.
|
noexcept |
Calculates the running top quark MS-bar mass mt(SM(6),Q) at the scale Q.
calculates mt(Q) MS-bar in the SM(6)
mt_pole | top quark pole mass |
alpha_s_at_mz | strong coupling at the scale Q = mz |
mz | Z boson pole mass |
scale | renormalization scale |
Definition at line 232 of file gm2_mf.cpp.
|
noexcept |
Calculates the running tau lepton MS-bar mass mtau(SM(6),Q) in the SM(6) at the scale Q.
calculates mtau(Q) MS-bar in the SM(6)
mtau_pole | tau lepton pole mass |
alpha_em_mz | electromagnetic coupling at the scale Q = MZ |
scale | renormalization scale |
Definition at line 293 of file gm2_mf.cpp.
double gm2calc::calculate_uncertainty_amu_0loop | ( | const MSSMNoFV_onshell & | , |
double | amu_1L | ||
) |
calculates uncertainty for amu(0-loop) w/ tan(beta) resummation
Calculates uncertainty associated with amu(0-loop) including tan(beta) resummation.
The estimated uncertainty is the magnitude amu(1-loop) (including tan(beta) resummation).
model | model parameters (unused tag type) |
amu_1L | 1-loop contribution to amu |
Definition at line 46 of file gm2_uncertainty.cpp.
double gm2calc::calculate_uncertainty_amu_0loop | ( | const MSSMNoFV_onshell & | model | ) |
Calculates uncertainty associated with amu(0-loop) including tan(beta) resummation.
calculates uncertainty for amu(0-loop) w/ tan(beta) resummation
model | model parameters |
Definition at line 59 of file gm2_uncertainty.cpp.
calculates uncertainty for amu(0-loop)
Calculates uncertainty associated with amu(0-loop)
The estimated uncertainty is the magnitude amu(1-loop) plus amu(2-loop).
model | model parameters (unused tag type) |
amu_1L | 1-loop contribution to amu |
amu_2L | 2-loop contribution to amu |
Definition at line 49 of file gm2_uncertainty.cpp.
Calculates uncertainty associated with amu(0-loop)
calculates uncertainty for amu(0-loop)
model | model parameters |
Definition at line 61 of file gm2_uncertainty.cpp.
double gm2calc::calculate_uncertainty_amu_1loop | ( | const MSSMNoFV_onshell & | model, |
double | amu_2L | ||
) |
calculates uncertainty for amu(1-loop) w/ tan(beta) resummation
Calculates uncertainty associated with amu(1-loop) including tan(beta) resummation.
The estimated uncertainty is the sum of magnitude amu(2-loop) (including tan(beta) resummation) and the 2-loop uncertainty.
model | model parameters |
amu_2L | 2-loop contribution to amu |
Definition at line 78 of file gm2_uncertainty.cpp.
double gm2calc::calculate_uncertainty_amu_1loop | ( | const MSSMNoFV_onshell & | model | ) |
Calculates uncertainty associated with amu(1-loop) including tan(beta) resummation.
calculates uncertainty for amu(1-loop) w/ tan(beta) resummation
model | model parameters |
Definition at line 93 of file gm2_uncertainty.cpp.
double gm2calc::calculate_uncertainty_amu_1loop | ( | const THDM & | model, |
double | amu_1L, | ||
double | amu_2L | ||
) |
calculates uncertainty for amu(1-loop)
Calculates uncertainty associated with amu(1-loop)
The estimated uncertainty is the sum of magnitude amu(2-loop) and the 2-loop uncertainty, calculated by calculate_uncertainty_amu_2loop().
model | model parameters |
amu_1L | 1-loop contribution to amu |
amu_2L | 2-loop contribution to amu |
Definition at line 82 of file gm2_uncertainty.cpp.
Calculates uncertainty associated with amu(1-loop)
calculates uncertainty for amu(1-loop)
model | model parameters |
Definition at line 96 of file gm2_uncertainty.cpp.
double gm2calc::calculate_uncertainty_amu_2loop | ( | const MSSMNoFV_onshell & | model | ) |
Calculates uncertainty associated with amu(2-loop) using Eq (4).
calculates uncertainty for amu(2-loop)
Eq. (4) takes into account the unknown two-loop contributions and the employed approximation for the 2L(a) contributions.
model | model parameters |
Definition at line 110 of file gm2_uncertainty.cpp.
double gm2calc::calculate_uncertainty_amu_2loop | ( | const THDM & | model, |
double | amu_1L, | ||
double | amu_2L | ||
) |
calculates uncertainty for amu(2-loop)
Calculates uncertainty associated with amu(2-loop)
Takes into account the neglected two-loop contribution
model | model parameters |
amu_1L | 1-loop contribution to amu |
amu_2L | 2-loop contribution to amu |
Definition at line 118 of file gm2_uncertainty.cpp.
Calculates uncertainty associated with amu(2-loop)
calculates uncertainty for amu(2-loop)
model | model parameters |
Definition at line 150 of file gm2_uncertainty.cpp.
Clausen function
Clausen function Cl_2(x)
x | real angle |
Definition at line 232 of file gm2_dilog.cpp.
Definition at line 29 of file gm2_eigen_utils.hpp.
returns number to the third power
Definition at line 32 of file gm2_numerics.hpp.
double gm2calc::delta_bottom_correction | ( | const MSSMNoFV_onshell & | model | ) |
Returns the
Definition at line 459 of file gm2_1loop.cpp.
double gm2calc::delta_down_lepton_correction | ( | const MSSMNoFV_onshell & | model, |
int | gen | ||
) |
Calculates
model | model parameters |
gen | lepton generation (0 = electron, 1 = muon, 2 = tau) |
Definition at line 402 of file gm2_1loop.cpp.
double gm2calc::delta_g1 | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Contributions from 1st and 2nd generation sleptons have been included in addition.
Definition at line 141 of file gm2_2loop.cpp.
double gm2calc::delta_g2 | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Contributions from 1st and 2nd generation sleptons have been included in addition.
Definition at line 215 of file gm2_2loop.cpp.
double gm2calc::delta_mu_correction | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
model | model parameters |
Definition at line 438 of file gm2_1loop.cpp.
double gm2calc::delta_tan_beta | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Definition at line 248 of file gm2_2loop.cpp.
double gm2calc::delta_tau_correction | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
model | model parameters |
Definition at line 450 of file gm2_1loop.cpp.
double gm2calc::delta_yuk_bino_higgsino | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Definition at line 197 of file gm2_2loop.cpp.
double gm2calc::delta_yuk_higgsino | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Definition at line 172 of file gm2_2loop.cpp.
double gm2calc::delta_yuk_wino_higgsino | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Definition at line 235 of file gm2_2loop.cpp.
void gm2calc::diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w | ||
) |
Returns eigenvalues of N-by-N hermitian matrix m via w.
Elements of w are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m and z |
N | number of rows and columns in m and z |
[in] | m | N-by-N matrix to be diagonalized |
[out] | w | array of length N to contain eigenvalues |
Definition at line 455 of file gm2_linalg.hpp.
void gm2calc::diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > & | z | ||
) |
Diagonalizes N-by-N hermitian matrix m so that.
m == z * w.matrix().asDiagonal() * z.adjoint()
Elements of w are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m and z |
N | number of rows and columns in m and z |
[in] | m | N-by-N matrix to be diagonalized |
[out] | w | array of length N to contain eigenvalues |
[out] | z | N-by-N unitary matrix |
Definition at line 393 of file gm2_linalg.hpp.
void gm2calc::diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > & | z, | ||
Real & | w_errbd | ||
) |
Same as diagonalize_hermitian(m, w, z) except that an approximate error bound for the eigenvalues is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node89.html.
[out] | w_errbd | approximate error bound for the elements of w |
See the documentation of diagonalize_hermitian(m, w, z) for the other parameters.
Definition at line 413 of file gm2_linalg.hpp.
void gm2calc::diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > & | z, | ||
Real & | w_errbd, | ||
Eigen::Array< Real, N, 1 > & | z_errbd | ||
) |
Same as diagonalize_hermitian(m, w, z, w_errbd) except that approximate error bounds for the eigenvectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node89.html.
[out] | z_errbd | array of approximate error bounds for z |
See the documentation of diagonalize_hermitian(m, w, z, w_errbd) for the other parameters.
Definition at line 434 of file gm2_linalg.hpp.
void gm2calc::diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Real & | w_errbd | ||
) |
Same as diagonalize_hermitian(m, w) except that an approximate error bound for the eigenvalues is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node89.html.
[out] | w_errbd | approximate error bound for the elements of w |
See the documentation of diagonalize_hermitian(m, w) for the other parameters.
Definition at line 474 of file gm2_linalg.hpp.
void gm2calc::diagonalize_hermitian_errbd | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > * | z = 0 , |
||
Real * | w_errbd = 0 , |
||
Eigen::Array< Real, N, 1 > * | z_errbd = 0 |
||
) |
Definition at line 355 of file gm2_linalg.hpp.
void gm2calc::diagonalize_hermitian_internal | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > * | z | ||
) |
Definition at line 346 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< Real, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s | ||
) |
Returns singular values of N-by-N real symmetric matrix m via s such that (s >= 0).all()
.
Order of elements of s is unspecified.
Real | type of elements of m and s |
N | number of rows and columns of m |
[in] | m | N-by-N real symmetric matrix to be decomposed |
[out] | s | array of length N to contain singular values |
s[i]
matters. Definition at line 727 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< Real, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u | ||
) |
Diagonalizes N-by-N real symmetric matrix m so that.
m == u * s.matrix().asDiagonal() * u.transpose()
and (s >= 0).all()
. Order of elements of s is unspecified.
Real | type of real and imaginary parts |
N | number of rows and columns of m |
[in] | m | N-by-N real symmetric matrix to be decomposed |
[out] | s | array of length N to contain singular values |
[out] | u | N-by-N complex unitary matrix |
s[i]
matters. Definition at line 663 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< Real, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u, | ||
Real & | s_errbd | ||
) |
Same as diagonalize_symmetric(m, s, u) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node89.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of diagonalize_symmetric(m, s, u) for the other parameters.
Definition at line 683 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< Real, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u, | ||
Real & | s_errbd, | ||
Eigen::Array< Real, N, 1 > & | u_errbd | ||
) |
Same as diagonalize_symmetric(m, s, u, s_errbd) except that approximate error bounds for the singular vectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node89.html.
[out] | u_errbd | array of approximate error bounds for u |
See the documentation of diagonalize_symmetric(m, s, u, s_errbd) for the other parameters.
Definition at line 704 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< Real, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Real & | s_errbd | ||
) |
Same as diagonalize_symmetric(m, s) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node89.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of diagonalize_symmetric(m, s) for the other parameters.
Definition at line 746 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< std::complex< Real >, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s | ||
) |
Returns singular values of N-by-N complex symmetric matrix m via s such that (s >= 0).all()
.
Elements of s are in descending order.
Real | type of real and imaginary parts |
N | number of rows and columns in m and u |
[in] | m | N-by-N complex symmetric matrix to be decomposed |
[out] | s | array of length N to contain singular values |
Definition at line 592 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< std::complex< Real >, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u | ||
) |
Diagonalizes N-by-N complex symmetric matrix m so that.
m == u * s.matrix().asDiagonal() * u.transpose()
and (s >= 0).all()
. Elements of s are in descending order.
Real | type of real and imaginary parts |
N | number of rows and columns in m and u |
[in] | m | N-by-N complex symmetric matrix to be decomposed |
[out] | s | array of length N to contain singular values |
[out] | u | N-by-N complex unitary matrix |
Definition at line 531 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< std::complex< Real >, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u, | ||
Real & | s_errbd | ||
) |
Same as diagonalize_symmetric(m, s, u) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of diagonalize_symmetric(m, s, u) for the other parameters.
Definition at line 551 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< std::complex< Real >, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u, | ||
Real & | s_errbd, | ||
Eigen::Array< Real, N, 1 > & | u_errbd | ||
) |
Same as diagonalize_symmetric(m, s, u, s_errbd) except that approximate error bounds for the singular vectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | u_errbd | array of approximate error bounds for u |
See the documentation of diagonalize_symmetric(m, s, u, s_errbd) for the other parameters.
Definition at line 572 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric | ( | const Eigen::Matrix< std::complex< Real >, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Real & | s_errbd | ||
) |
Same as diagonalize_symmetric(m, s) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of diagonalize_symmetric(m, s) for the other parameters.
Definition at line 611 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric_errbd | ( | const Eigen::Matrix< Real, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > * | u = 0 , |
||
Real * | s_errbd = 0 , |
||
Eigen::Array< Real, N, 1 > * | u_errbd = 0 |
||
) |
Definition at line 628 of file gm2_linalg.hpp.
void gm2calc::diagonalize_symmetric_errbd | ( | const Eigen::Matrix< std::complex< Real >, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > * | u = 0 , |
||
Real * | s_errbd = 0 , |
||
Eigen::Array< Real, N, 1 > * | u_errbd = 0 |
||
) |
Definition at line 483 of file gm2_linalg.hpp.
Complex dilogarithm
complex dilogarithm
z | complex argument |
Definition at line 154 of file gm2_dilog.cpp.
Real dilogarithm
real dilogarithm
x | real argument |
Implemented as an economized Pade approximation with a maximum error of 4.16e-18. [arXiv:2201.01678].
Definition at line 75 of file gm2_dilog.cpp.
void gm2calc::disna | ( | const char & | JOB, |
const Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | D, | ||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | SEP, | ||
int & | INFO | ||
) |
Template version of DDISNA from LAPACK.
Definition at line 72 of file gm2_linalg.hpp.
Definition at line 745 of file gm2_ffunctions.cpp.
Definition at line 226 of file gm2_ffunctions.cpp.
Definition at line 308 of file gm2_ffunctions.cpp.
Definition at line 761 of file gm2_ffunctions.cpp.
Definition at line 768 of file gm2_ffunctions.cpp.
Definition at line 242 of file gm2_ffunctions.cpp.
Definition at line 323 of file gm2_ffunctions.cpp.
Definition at line 783 of file gm2_ffunctions.cpp.
Definition at line 257 of file gm2_ffunctions.cpp.
Definition at line 338 of file gm2_ffunctions.cpp.
Definition at line 281 of file gm2_ffunctions.cpp.
Definition at line 359 of file gm2_ffunctions.cpp.
Eq (61), arxiv:1607.06292, with extra global prefactor xd.
Definition at line 699 of file gm2_ffunctions.cpp.
Calculates Barr-Zee 2-loop function for diagram with lepton loop and charged Higgs and W boson mediators, Eq (60), arxiv:1607.06292, with extra global prefactor z.
Definition at line 680 of file gm2_ffunctions.cpp.
Eq (62), arxiv:1607.06292, with extra global prefactor xu.
Definition at line 721 of file gm2_ffunctions.cpp.
Calculates
Definition at line 616 of file gm2_ffunctions.cpp.
Calculates
Definition at line 645 of file gm2_ffunctions.cpp.
Calculates
Definition at line 664 of file gm2_ffunctions.cpp.
Definition at line 472 of file gm2_ffunctions.cpp.
Definition at line 413 of file gm2_ffunctions.cpp.
Barr-Zee 2-loop function with down-type quark loop and charge scalar and W boson mediators.
xu | squared mass ratio (mu/ms)^2. |
xd | squared mass ratio (md/ms)^2. |
yu | squared mass ratio (mu/mw)^2. |
yd | squared mass ratio (md/mw)^2. |
qu | electric charge count of up-type quark |
qd | electric charge count of down-type quark |
Definition at line 941 of file gm2_ffunctions.cpp.
Barr-Zee 2-loop function with lepton loop and charge scalar and W boson mediators.
x | squared mass ratio (mf/ms)^2. |
y | squared mass ratio (mf/mw)^2. |
Definition at line 879 of file gm2_ffunctions.cpp.
Barr-Zee 2-loop function with up-type quark loop and charge scalar and W boson mediators.
xu | squared mass ratio (mu/ms)^2. |
xd | squared mass ratio (md/ms)^2. |
yu | squared mass ratio (mu/mw)^2. |
yd | squared mass ratio (md/mw)^2. |
qu | electric charge count of up-type quark |
qd | electric charge count of down-type quark |
Definition at line 912 of file gm2_ffunctions.cpp.
Barr-Zee 2-loop function with fermion loop and pseudoscalar and Z boson mediators.
x | squared mass ratio (mf/ms)^2. |
y | squared mass ratio (mf/mz)^2. |
Definition at line 809 of file gm2_ffunctions.cpp.
void gm2calc::fs_diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w | ||
) |
Returns eigenvalues of N-by-N hermitian matrix m via w.
w is arranged so that abs(w[i])
are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m and z |
N | number of rows and columns in m and z |
[in] | m | N-by-N matrix to be diagonalized |
[out] | w | array of length N to contain eigenvalues |
Definition at line 1479 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > & | z | ||
) |
Diagonalizes N-by-N hermitian matrix m so that.
m == z.adjoint() * w.matrix().asDiagonal() * z // convention of SARAH
w is arranged so that abs(w[i])
are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m and z |
N | number of rows and columns in m and z |
[in] | m | N-by-N matrix to be diagonalized |
[out] | w | array of length N to contain eigenvalues |
[out] | z | N-by-N unitary matrix |
Definition at line 1417 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > & | z, | ||
Real & | w_errbd | ||
) |
Same as fs_diagonalize_hermitian(m, w, z) except that an approximate error bound for the eigenvalues is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node89.html.
[out] | w_errbd | approximate error bound for the elements of w |
See the documentation of fs_diagonalize_hermitian(m, w, z) for the other parameters.
Definition at line 1437 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > & | z, | ||
Real & | w_errbd, | ||
Eigen::Array< Real, N, 1 > & | z_errbd | ||
) |
Same as fs_diagonalize_hermitian(m, w, z, w_errbd) except that approximate error bounds for the eigenvectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node89.html.
[out] | z_errbd | array of approximate error bounds for z |
See the documentation of fs_diagonalize_hermitian(m, w, z, w_errbd) for the other parameters.
Definition at line 1458 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_hermitian | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Real & | w_errbd | ||
) |
Same as fs_diagonalize_hermitian(m, w) except that an approximate error bound for the eigenvalues is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node89.html.
[out] | w_errbd | approximate error bound for the elements of w |
See the documentation of fs_diagonalize_hermitian(m, w) for the other parameters.
Definition at line 1498 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_hermitian_errbd | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > * | z = 0 , |
||
Real * | w_errbd = 0 , |
||
Eigen::Array< Real, N, 1 > * | z_errbd = 0 |
||
) |
Definition at line 1378 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s | ||
) |
Returns singular values of N-by-N symmetric matrix m via s such that (s >= 0).all()
.
Elements of s are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m |
N | number of rows and columns in m and u |
[in] | m | N-by-N symmetric matrix to be decomposed |
[out] | s | array of length N to contain singular values |
Definition at line 1350 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u | ||
) |
Diagonalizes N-by-N symmetric matrix m so that.
m == u.transpose() * s.matrix().asDiagonal() * u // convention of Haber and Kane, Phys. Rept. 117 (1985) 75-263
and (s >= 0).all()
. Elements of s are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m |
N | number of rows and columns in m and u |
[in] | m | N-by-N symmetric matrix to be decomposed |
[out] | s | array of length N to contain singular values |
[out] | u | N-by-N complex unitary matrix |
Definition at line 1288 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u, | ||
Real & | s_errbd | ||
) |
Same as fs_diagonalize_symmetric(m, s, u) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of fs_diagonalize_symmetric(m, s, u) for the other parameters.
Definition at line 1308 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u, | ||
Real & | s_errbd, | ||
Eigen::Array< Real, N, 1 > & | u_errbd | ||
) |
Same as fs_diagonalize_symmetric(m, s, u, s_errbd) except that approximate error bounds for the singular vectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | u_errbd | array of approximate error bounds for u |
See the documentation of fs_diagonalize_symmetric(m, s, u, s_errbd) for the other parameters.
Definition at line 1329 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Real & | s_errbd | ||
) |
Same as fs_diagonalize_symmetric(m, s) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of fs_diagonalize_symmetric(m, s) for the other parameters.
Definition at line 1369 of file gm2_linalg.hpp.
void gm2calc::fs_diagonalize_symmetric_errbd | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > * | u = 0 , |
||
Real * | s_errbd = 0 , |
||
Eigen::Array< Real, N, 1 > * | u_errbd = 0 |
||
) |
Definition at line 1261 of file gm2_linalg.hpp.
void gm2calc::fs_svd | ( | const Eigen::Matrix< Real, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, M, M > & | u, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | v | ||
) |
Singular value decomposition of M-by-N real matrix m such that.
sigma.setZero(); sigma.diagonal() = s; m == u.transpose() * sigma * v // convention of Haber and Kane, Phys. Rept. 117 (1985) 75-263
and (s >= 0).all()
. Elements of s are in ascending order. The above decomposition can be put in the form
m == u.transpose() * s.matrix().asDiagonal() * v
if M == N
.
Real | type of real and imaginary parts |
M | number of rows in m |
N | number of columns in m |
[in] | m | M-by-N real matrix to be decomposed |
[out] | s | array of length min(M,N) to contain singular values |
[out] | u | M-by-M complex unitary matrix |
[out] | v | N-by-N complex unitary matrix |
Definition at line 1202 of file gm2_linalg.hpp.
void gm2calc::fs_svd | ( | const Eigen::Matrix< Real, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, M, M > & | u, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | v, | ||
Real & | s_errbd | ||
) |
Same as fs_svd(m, s, u, v) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of fs_svd(m, s, u, v) for the other parameters.
Definition at line 1223 of file gm2_linalg.hpp.
void gm2calc::fs_svd | ( | const Eigen::Matrix< Real, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, M, M > & | u, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | v, | ||
Real & | s_errbd, | ||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | u_errbd, | ||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | v_errbd | ||
) |
Same as fs_svd(m, s, u, v, s_errbd) except that approximate error bounds for the singular vectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | u_errbd | array of approximate error bounds for u |
[out] | v_errbd | array of approximate error bounds for vh |
See the documentation of fs_svd(m, s, u, v, s_errbd) for the other parameters.
Definition at line 1246 of file gm2_linalg.hpp.
void gm2calc::fs_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s | ||
) |
Returns singular values of M-by-N matrix m via s such that (s >= 0).all()
.
Elements of s are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m, u, and v |
M | number of rows in m |
N | number of columns in m |
[in] | m | M-by-N matrix to be decomposed |
[out] | s | array of length min(M,N) to contain singular values |
Definition at line 1149 of file gm2_linalg.hpp.
void gm2calc::fs_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > & | u, | ||
Eigen::Matrix< Scalar, N, N > & | v | ||
) |
Singular value decomposition of M-by-N matrix m such that.
sigma.setZero(); sigma.diagonal() = s; m == u.transpose() * sigma * v // convention of Haber and Kane, Phys. Rept. 117 (1985) 75-263
and (s >= 0).all()
. Elements of s are in ascending order. The above decomposition can be put in the form
m == u.transpose() * s.matrix().asDiagonal() * v
if M == N
.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m, u, and v |
M | number of rows in m |
N | number of columns in m |
[in] | m | M-by-N matrix to be decomposed |
[out] | s | array of length min(M,N) to contain singular values |
[out] | u | M-by-M unitary matrix |
[out] | v | N-by-N unitary matrix |
Definition at line 1081 of file gm2_linalg.hpp.
void gm2calc::fs_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > & | u, | ||
Eigen::Matrix< Scalar, N, N > & | v, | ||
Real & | s_errbd | ||
) |
Same as fs_svd(m, s, u, v) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of fs_svd(m, s, u, v) for the other parameters.
Definition at line 1102 of file gm2_linalg.hpp.
void gm2calc::fs_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > & | u, | ||
Eigen::Matrix< Scalar, N, N > & | v, | ||
Real & | s_errbd, | ||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | u_errbd, | ||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | v_errbd | ||
) |
Same as fs_svd(m, s, u, v, s_errbd) except that approximate error bounds for the singular vectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | u_errbd | array of approximate error bounds for u |
[out] | v_errbd | array of approximate error bounds for vh |
See the documentation of fs_svd(m, s, u, v, s_errbd) for the other parameters.
Definition at line 1125 of file gm2_linalg.hpp.
void gm2calc::fs_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Real & | s_errbd | ||
) |
Same as fs_svd(m, s) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of fs_svd(m, s) for the other parameters.
Definition at line 1167 of file gm2_linalg.hpp.
void gm2calc::fs_svd_errbd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > * | u = 0 , |
||
Eigen::Matrix< Scalar, N, N > * | v = 0 , |
||
Real * | s_errbd = 0 , |
||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > * | u_errbd = 0 , |
||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > * | v_errbd = 0 |
||
) |
Definition at line 1044 of file gm2_linalg.hpp.
Barr-Zee 2-loop function with fermion loop and scalar and Z boson mediators.
x | squared mass ratio (mf/ms)^2. |
y | squared mass ratio (mf/mz)^2. |
Definition at line 840 of file gm2_ffunctions.cpp.
Definition at line 495 of file gm2_ffunctions.cpp.
Definition at line 505 of file gm2_ffunctions.cpp.
void gm2calc::hermitian_eigen | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | w, | ||
Eigen::Matrix< Scalar, N, N > * | z | ||
) |
Definition at line 53 of file gm2_linalg.hpp.
Definition at line 608 of file gm2_ffunctions.cpp.
bool gm2calc::is_equal | ( | const Eigen::ArrayBase< Derived > & | a, |
const Eigen::ArrayBase< Derived > & | b, | ||
double | precision_goal | ||
) |
Definition at line 41 of file gm2_eigen_utils.hpp.
Definition at line 59 of file gm2_numerics.hpp.
Definition at line 65 of file gm2_numerics.hpp.
Definition at line 49 of file gm2_eigen_utils.hpp.
Definition at line 53 of file gm2_numerics.hpp.
Källén lambda function
Källén lambda function
The arguments u and v are interpreted as squared masses.
x | squared mass |
y | squared mass |
z | squared mass |
Definition at line 969 of file gm2_ffunctions.cpp.
Eigen::Matrix< std::complex< double >, 3, 3 > gm2calc::lambda_mu_cha | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Row 0 contains
includes tan(beta) resummation
Definition at line 447 of file gm2_2loop.cpp.
Eigen::Matrix< std::complex< double >, 2, 2 > gm2calc::lambda_sbot | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
includes tan(beta) resummation
Definition at line 520 of file gm2_2loop.cpp.
Eigen::Matrix< std::complex< double >, 2, 2 > gm2calc::lambda_stau | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
includes tan(beta) resummation
Definition at line 552 of file gm2_2loop.cpp.
Eigen::Matrix< std::complex< double >, 2, 2 > gm2calc::lambda_stop | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Definition at line 486 of file gm2_2loop.cpp.
double gm2calc::log_scale | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Finds minimum of special masses to normalize logarithms.
Definition at line 126 of file gm2_2loop.cpp.
Definition at line 44 of file gm2_raii.hpp.
void gm2calc::move_goldstone_to | ( | int | idx, |
double | mass, | ||
Eigen::ArrayBase< DerivedArray > & | v, | ||
Eigen::MatrixBase< DerivedMatrix > & | z | ||
) |
The element of v, which is closest to mass, is moved to the position idx.
idx | new index of the mass eigenvalue |
mass | mass to compare against |
v | vector of masses |
z | corresponding mixing matrix |
Definition at line 88 of file gm2_eigen_utils.hpp.
Eigen::Array< std::complex< double >, 4, 2 > gm2calc::n_L | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Definition at line 131 of file gm2_1loop.cpp.
Eigen::Array< std::complex< double >, 4, 2 > gm2calc::n_R | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
Definition at line 157 of file gm2_1loop.cpp.
void gm2calc::normalize_to_interval | ( | Eigen::Matrix< double, M, N > & | m, |
double | min = -1. , |
||
double | max = 1. |
||
) |
Normalize each element of the given real matrix to be within the interval [min, max].
Values < min are set to min. Values > max are set to max.
m | matrix |
min | minimum |
max | maximum |
Definition at line 64 of file gm2_eigen_utils.hpp.
std::ostream & gm2calc::operator<< | ( | std::ostream & | os, |
const MSSMNoFV_onshell & | model | ||
) |
streaming operator
Definition at line 891 of file MSSMNoFV_onshell.cpp.
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const SM & | sm | ||
) |
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const THDM & | model | ||
) |
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const MSSMNoFV_onshell_mass_eigenstates & | model | ||
) |
Definition at line 1005 of file MSSMNoFV_onshell_mass_eigenstates.cpp.
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const MSSMNoFV_onshell_physical & | phys_pars | ||
) |
Definition at line 148 of file MSSMNoFV_onshell_physical.cpp.
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const MSSMNoFV_onshell_problems & | problems | ||
) |
Definition at line 177 of file MSSMNoFV_onshell_problems.cpp.
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const MSSMNoFV_onshell_soft_parameters & | soft_pars | ||
) |
Definition at line 45 of file MSSMNoFV_onshell_soft_parameters.cpp.
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const MSSMNoFV_onshell_susy_parameters & | susy_pars | ||
) |
Definition at line 39 of file MSSMNoFV_onshell_susy_parameters.cpp.
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const THDM_mass_eigenstates & | model | ||
) |
Definition at line 529 of file THDM_mass_eigenstates.cpp.
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const THDM_parameters & | pars | ||
) |
Definition at line 53 of file THDM_parameters.cpp.
std::ostream & gm2calc::operator<< | ( | std::ostream & | ostr, |
const THDM_problems & | problems | ||
) |
Definition at line 107 of file THDM_problems.cpp.
(68).
x | squared mass |
y | squared mass |
z | squared mass |
Definition at line 987 of file gm2_ffunctions.cpp.
returns number to the third power
Definition at line 35 of file gm2_numerics.hpp.
returns number to the 4th power
Definition at line 38 of file gm2_numerics.hpp.
Eigen::Array< Real, Nsrc - Ncmp, 1 > gm2calc::remove_if_equal | ( | const Eigen::Array< Real, Nsrc, 1 > & | src, |
const Eigen::Array< Real, Ncmp, 1 > & | cmp | ||
) |
Returns all elements from src, which are not close to the elements in cmp.
The returned vector will have the length (src.size() - cmp.size()).
src | source vector |
cmp | vector with elements to compare against |
Definition at line 118 of file gm2_eigen_utils.hpp.
void gm2calc::reorder_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s | ||
) |
Returns singular values of N-by-N symmetric matrix m via s such that (s >= 0).all()
.
Elements of s are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m |
N | number of rows and columns in m and u |
[in] | m | N-by-N symmetric matrix to be decomposed |
[out] | s | array of length N to contain singular values |
Definition at line 1016 of file gm2_linalg.hpp.
void gm2calc::reorder_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u | ||
) |
Diagonalizes N-by-N symmetric matrix m so that.
m == u * s.matrix().asDiagonal() * u.transpose()
and (s >= 0).all()
. Elements of s are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m |
N | number of rows and columns in m and u |
[in] | m | N-by-N symmetric matrix to be decomposed |
[out] | s | array of length N to contain singular values |
[out] | u | N-by-N complex unitary matrix |
Definition at line 954 of file gm2_linalg.hpp.
void gm2calc::reorder_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u, | ||
Real & | s_errbd | ||
) |
Same as reorder_diagonalize_symmetric(m, s, u) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of reorder_diagonalize_symmetric(m, s, u) for the other parameters.
Definition at line 974 of file gm2_linalg.hpp.
void gm2calc::reorder_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > & | u, | ||
Real & | s_errbd, | ||
Eigen::Array< Real, N, 1 > & | u_errbd | ||
) |
Same as reorder_diagonalize_symmetric(m, s, u, s_errbd) except that approximate error bounds for the singular vectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | u_errbd | array of approximate error bounds for u |
See the documentation of reorder_diagonalize_symmetric(m, s, u, s_errbd) for the other parameters.
Definition at line 995 of file gm2_linalg.hpp.
void gm2calc::reorder_diagonalize_symmetric | ( | const Eigen::Matrix< Scalar, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Real & | s_errbd | ||
) |
Same as reorder_diagonalize_symmetric(m, s) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of reorder_diagonalize_symmetric(m, s) for the other parameters.
Definition at line 1035 of file gm2_linalg.hpp.
void gm2calc::reorder_diagonalize_symmetric_errbd | ( | const Eigen::Matrix< Real, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > * | u = 0 , |
||
Real * | s_errbd = 0 , |
||
Eigen::Array< Real, N, 1 > * | u_errbd = 0 |
||
) |
Definition at line 915 of file gm2_linalg.hpp.
void gm2calc::reorder_diagonalize_symmetric_errbd | ( | const Eigen::Matrix< std::complex< Real >, N, N > & | m, |
Eigen::Array< Real, N, 1 > & | s, | ||
Eigen::Matrix< std::complex< Real >, N, N > * | u = 0 , |
||
Real * | s_errbd = 0 , |
||
Eigen::Array< Real, N, 1 > * | u_errbd = 0 |
||
) |
Definition at line 901 of file gm2_linalg.hpp.
void gm2calc::reorder_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s | ||
) |
Returns singular values of M-by-N matrix m via s such that (s >= 0).all()
.
Elements of s are in ascending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m, u, and vh |
M | number of rows in m |
N | number of columns in m |
[in] | m | M-by-N matrix to be decomposed |
[out] | s | array of length min(M,N) to contain singular values |
Definition at line 873 of file gm2_linalg.hpp.
void gm2calc::reorder_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > & | u, | ||
Eigen::Matrix< Scalar, N, N > & | vh | ||
) |
Singular value decomposition of M-by-N matrix m such that.
sigma.setZero(); sigma.diagonal() = s; m == u * sigma * vh // LAPACK convention
and (s >= 0).all()
. Elements of s are in ascending order. The above decomposition can be put in the form
m == u * s.matrix().asDiagonal() * vh
if M == N
.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m, u, and vh |
M | number of rows in m |
N | number of columns in m |
[in] | m | M-by-N matrix to be decomposed |
[out] | s | array of length min(M,N) to contain singular values |
[out] | u | M-by-M unitary matrix |
[out] | vh | N-by-N unitary matrix |
Definition at line 805 of file gm2_linalg.hpp.
void gm2calc::reorder_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > & | u, | ||
Eigen::Matrix< Scalar, N, N > & | vh, | ||
Real & | s_errbd | ||
) |
Same as reorder_svd(m, s, u, vh) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of reorder_svd(m, s, u, vh) for the other parameters.
Definition at line 826 of file gm2_linalg.hpp.
void gm2calc::reorder_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > & | u, | ||
Eigen::Matrix< Scalar, N, N > & | vh, | ||
Real & | s_errbd, | ||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | u_errbd, | ||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | v_errbd | ||
) |
Same as reorder_svd(m, s, u, vh, s_errbd) except that approximate error bounds for the singular vectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | u_errbd | array of approximate error bounds for u |
[out] | v_errbd | array of approximate error bounds for vh |
See the documentation of reorder_svd(m, s, u, vh, s_errbd) for the other parameters.
Definition at line 849 of file gm2_linalg.hpp.
void gm2calc::reorder_svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Real & | s_errbd | ||
) |
Same as reorder_svd(m, s) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of reorder_svd(m, s) for the other parameters.
Definition at line 892 of file gm2_linalg.hpp.
void gm2calc::reorder_svd_errbd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > * | u = 0 , |
||
Eigen::Matrix< Scalar, N, N > * | vh = 0 , |
||
Real * | s_errbd = 0 , |
||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > * | u_errbd = 0 , |
||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > * | v_errbd = 0 |
||
) |
Definition at line 755 of file gm2_linalg.hpp.
void gm2calc::reorder_vector | ( | Eigen::Array< double, Eigen::MatrixBase< Derived >::RowsAtCompileTime, 1 > & | v, |
const Eigen::MatrixBase< Derived > & | matrix | ||
) |
reorders vector v according to ordering of diagonal elements in mass_matrix
v | vector with elementes to be reordered |
matrix | matrix with diagonal elements with reference ordering |
Definition at line 167 of file gm2_eigen_utils.hpp.
void gm2calc::reorder_vector | ( | Eigen::Array< Real, N, 1 > & | v, |
const Eigen::Array< Real, N, 1 > & | v2 | ||
) |
reorders vector v according to ordering in vector v2
v | vector with elementes to be reordered |
v2 | vector with reference ordering |
Definition at line 145 of file gm2_eigen_utils.hpp.
returns sign of real number
Definition at line 27 of file gm2_numerics.cpp.
returns square root of absolute of number, times sign
Definition at line 35 of file gm2_numerics.cpp.
returns square of number, times sign
Definition at line 31 of file gm2_numerics.cpp.
returns number squared
Definition at line 29 of file gm2_numerics.hpp.
void gm2calc::svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s | ||
) |
Returns singular values of M-by-N matrix m via s such that (s >= 0).all()
.
Elements of s are in descending order.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m, u, and vh |
M | number of rows in m |
N | number of columns in m |
[in] | m | M-by-N matrix to be decomposed |
[out] | s | array of length min(M,N) to contain singular values |
Definition at line 317 of file gm2_linalg.hpp.
void gm2calc::svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > & | u, | ||
Eigen::Matrix< Scalar, N, N > & | vh | ||
) |
Singular value decomposition of M-by-N matrix m such that.
sigma.setZero(); sigma.diagonal() = s; m == u * sigma * vh // LAPACK convention
and (s >= 0).all()
. Elements of s are in descending order. The above decomposition can be put in the form
m == u * s.matrix().asDiagonal() * vh
if M == N
.
Real | type of real and imaginary parts of Scalar |
Scalar | type of elements of m, u, and vh |
M | number of rows in m |
N | number of columns in m |
[in] | m | M-by-N matrix to be decomposed |
[out] | s | array of length min(M,N) to contain singular values |
[out] | u | M-by-M unitary matrix |
[out] | vh | N-by-N unitary matrix |
Definition at line 250 of file gm2_linalg.hpp.
void gm2calc::svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > & | u, | ||
Eigen::Matrix< Scalar, N, N > & | vh, | ||
Real & | s_errbd | ||
) |
Same as svd(m, s, u, vh) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of svd(m, s, u, vh) for the other parameters.
Definition at line 270 of file gm2_linalg.hpp.
void gm2calc::svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > & | u, | ||
Eigen::Matrix< Scalar, N, N > & | vh, | ||
Real & | s_errbd, | ||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | u_errbd, | ||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | v_errbd | ||
) |
Same as svd(m, s, u, vh, s_errbd) except that approximate error bounds for the singular vectors are returned as well.
The error bounds are estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | u_errbd | array of approximate error bounds for u |
[out] | v_errbd | array of approximate error bounds for vh |
See the documentation of svd(m, s, u, vh, s_errbd) for the other parameters.
Definition at line 293 of file gm2_linalg.hpp.
void gm2calc::svd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Real & | s_errbd | ||
) |
Same as svd(m, s) except that an approximate error bound for the singular values is returned as well.
The error bound is estimated following the method presented at http://www.netlib.org/lapack/lug/node96.html.
[out] | s_errbd | approximate error bound for the elements of s |
See the documentation of svd(m, s) for the other parameters.
Definition at line 335 of file gm2_linalg.hpp.
void gm2calc::svd_eigen | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > * | u, | ||
Eigen::Matrix< Scalar, N, N > * | vh | ||
) |
Definition at line 39 of file gm2_linalg.hpp.
void gm2calc::svd_errbd | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > * | u = 0 , |
||
Eigen::Matrix< Scalar, N, N > * | vh = 0 , |
||
Real * | s_errbd = 0 , |
||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > * | u_errbd = 0 , |
||
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > * | v_errbd = 0 |
||
) |
Definition at line 197 of file gm2_linalg.hpp.
void gm2calc::svd_internal | ( | const Eigen::Matrix< Scalar, M, N > & | m, |
Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > & | s, | ||
Eigen::Matrix< Scalar, M, M > * | u, | ||
Eigen::Matrix< Scalar, N, N > * | vh | ||
) |
Definition at line 187 of file gm2_linalg.hpp.
Definition at line 175 of file gm2_eigen_utils.hpp.
double gm2calc::tan_alpha | ( | const MSSMNoFV_onshell & | model | ) |
The following functions include resummation of 1/(1 + Delta_mu) within the muon, tau and bottom Yukawa couplings.
Calculates CP-even Higgs mixing angle
Definition at line 426 of file gm2_2loop.cpp.
double gm2calc::tan_beta_cor | ( | const MSSMNoFV_onshell & | model | ) |
Eigen::Array< double, 4, 2 > gm2calc::x_im | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
squared neutralino smuon mass ratio
Definition at line 249 of file gm2_1loop.cpp.
Eigen::Array< double, 2, 1 > gm2calc::x_k | ( | const MSSMNoFV_onshell & | model | ) |
Calculates
squared chargino muon-sneutrino mass ratio
Definition at line 261 of file gm2_1loop.cpp.
|
constexpr |
Definition at line 35 of file gm2_constants.hpp.
Definition at line 25 of file gm2_constants.hpp.
Definition at line 38 of file gm2_constants.hpp.
Definition at line 85 of file gm2_constants.hpp.
Definition at line 77 of file gm2_constants.hpp.
Definition at line 80 of file gm2_constants.hpp.
Definition at line 83 of file gm2_constants.hpp.
Definition at line 29 of file gm2_constants.hpp.
Definition at line 65 of file gm2_constants.hpp.
Definition at line 53 of file gm2_constants.hpp.
Definition at line 59 of file gm2_constants.hpp.
Definition at line 68 of file gm2_constants.hpp.
Definition at line 41 of file gm2_constants.hpp.
Definition at line 74 of file gm2_constants.hpp.
Definition at line 71 of file gm2_constants.hpp.
Definition at line 62 of file gm2_constants.hpp.
Definition at line 56 of file gm2_constants.hpp.
Definition at line 50 of file gm2_constants.hpp.
Definition at line 44 of file gm2_constants.hpp.
Definition at line 47 of file gm2_constants.hpp.