GM2Calc 2.3.0
Loading...
Searching...
No Matches
gm2_1loop.cpp
Go to the documentation of this file.
1// ====================================================================
2// This file is part of GM2Calc.
3//
4// GM2Calc is free software: you can redistribute it and/or modify
5// it under the terms of the GNU General Public License as published
6// by the Free Software Foundation, either version 3 of the License,
7// or (at your option) any later version.
8//
9// GM2Calc is distributed in the hope that it will be useful, but
10// WITHOUT ANY WARRANTY; without even the implied warranty of
11// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12// General Public License for more details.
13//
14// You should have received a copy of the GNU General Public License
15// along with GM2Calc. If not, see
16// <http://www.gnu.org/licenses/>.
17// ====================================================================
18
19#include "gm2calc/gm2_1loop.hpp"
21
23#include "gm2_ffunctions.hpp"
24#include "gm2_numerics.hpp"
25
26#include <cmath>
27#include <complex>
28#include <limits>
29
30/**
31 * \file gm2_1loop.cpp
32 *
33 * Contains functions necessary to calculate the SUSY contributions
34 * for g-2 at the 1-loop level.
35 */
36
37namespace gm2calc {
38
39namespace {
40
41constexpr double Pi = 3.141592653589793;
42constexpr double oneOver16PiSqr = 6.332573977646111e-3; // 1/(4 Pi)^2
43constexpr double root2 = 1.414213562373095; // Sqrt[2]
44constexpr double eps = std::numeric_limits<double>::epsilon();
45
46} // anonymous namespace
47
48/**
49 * Calculates full 1-loop SUSY contribution to (g-2), Eq (45) of
50 * arXiv:hep-ph/0609168.
51 *
52 * This function re-defines the muon Yukawa coupling in terms of the
53 * tree-level relation with the muon pole mass, i.e. \f$y_\mu =
54 * \frac{\sqrt{2} m_\mu^\text{pole}}{v_d}\f$. Therefore, this
55 * function does not use tan(beta) resummation.
56 */
58{
59 // create new model and reset its muon Yukawa coupling to tree-level
61 model_ytree.convert_to_non_tan_beta_resummed();
62
64}
65
66/**
67 * Calculates full 1-loop SUSY contribution to (g-2), Eq (45) of
68 * arXiv:hep-ph/0609168.
69 *
70 * This function assumes that the Yukawa coupling is defined according
71 * to arXiv:1504.05500, Eq. (13) and footnote 2. Therefore, this
72 * function uses tan(beta) resummation in the Yukawa coupling.
73 */
78
79/**
80 * Calculates 1-loop neutralino contribution to (g-2), Eq (2.11a) of
81 * arXiv:1311.1775.
82 */
84{
85 const Eigen::Array<double,2,1>& m_smu(model.get_MSm());
86 const Eigen::Array<double,4,2> AAN_(AAN(model));
87 const Eigen::Array<double,4,2> BBN_(BBN(model));
88 const Eigen::Array<double,4,2> x(x_im(model));
89 const Eigen::Array<double,4,1>& m_chi(model.get_MChi());
90
91 double result = 0;
92
93 for (int i = 0; i < 4; ++i) {
94 for (int m = 0; m < 2; ++m) {
95 result += - AAN_(i, m) * F1N(x(i, m)) / (12 * sqr(m_smu(m)))
96 - m_chi(i) * BBN_(i, m) * F2N(x(i, m))
97 / (6 * model.get_MM() * sqr(m_smu(m)));
98 }
99 }
100
101 return result * sqr(model.get_MM()) * oneOver16PiSqr;
102}
103
104/**
105 * Calculates 1-loop chargino contribution to (g-2), Eq (2.11b) of
106 * arXiv:1311.1775.
107 */
109{
110 const Eigen::Array<double,2,1> x(x_k(model));
111 const double MSvm(model.get_MSvmL());
112 const Eigen::Array<double,2,1> AAC_(AAC(model));
113 const Eigen::Array<double,2,1> BBC_(BBC(model));
114 const Eigen::Array<double,2,1>& m_cha(model.get_MCha());
115
116 double result = 0;
117
118 for (int k = 0; k < 2; ++k) {
119 result +=
120 AAC_(k) * F1C(x(k)) / 12 +
121 m_cha(k) * BBC_(k) * F2C(x(k)) / (3 * model.get_MM());
122 }
123
124 return result * sqr(model.get_MM()/MSvm) * oneOver16PiSqr;
125}
126
127/**
128 * Calculates \f$n^L_{i\tilde{l}_k}\f$, Eq (2.5o) of arXiv:1311.1775,
129 * for \f$l=\mu\f$
130 */
131Eigen::Array<std::complex<double>,4,2> n_L(const MSSMNoFV_onshell& model)
132{
133 const double gY(model.get_gY());
134 const double g2(model.get_g2());
135 const double ymu(model.get_Ye(1, 1));
136 const Eigen::Matrix<std::complex<double>,4,4>& ZN(model.get_ZN());
137 const Eigen::Matrix<double,2,2>& u_smu(model.get_USm());
138
139 Eigen::Array<std::complex<double>,4,2> result;
140
141 for (int i = 0; i < 4; ++i) {
142 for (int m = 0; m < 2; ++m) {
143 result(i, m) =
144 1 / root2 * (+ gY * std::conj(ZN(i,0))
145 + g2 * std::conj(ZN(i,1))) * u_smu(m,0)
146 - ymu * std::conj(ZN(i,2)) * u_smu(m,1);
147 }
148 }
149
150 return result;
151}
152
153/**
154 * Calculates \f$n^R_{i\tilde{l}_k}\f$, Eq (2.5p) of arXiv:1311.1775,
155 * with \f$l=\mu\f$.
156 */
157Eigen::Array<std::complex<double>,4,2> n_R(const MSSMNoFV_onshell& model)
158{
159 const double gY(model.get_gY());
160 const double ymu(model.get_Ye(1, 1));
161 const Eigen::Matrix<std::complex<double>,4,4>& ZN(model.get_ZN());
162 const Eigen::Matrix<double,2,2>& u_smu(model.get_USm());
163
164 Eigen::Array<std::complex<double>,4,2> result;
165
166 for (int i = 0; i < 4; ++i) {
167 for (int m = 0; m < 2; ++m) {
168 result(i, m) = -(root2 * gY * ZN(i, 0) * u_smu(m, 1) +
169 ymu * ZN(i, 2) * u_smu(m, 0));
170 }
171 }
172
173 return result;
174}
175
176/**
177 * Calculates \f$c^L_{i\tilde{\nu}_\mu}\f$, Eq (2.5a) of
178 * arXiv:1311.1775 for \f$l=\mu\f$.
179 *
180 * This expression is the complex conjugate of Eq. (50) of
181 * arXiv:hep-ph/0609168.
182 */
183Eigen::Array<std::complex<double>,2,1> c_L(const MSSMNoFV_onshell& model)
184{
185 return -model.get_g2() * model.get_UP().col(0).conjugate();
186}
187
188/**
189 * Calculates \f$c^R_{i\tilde{\nu}_\mu}\f$, Eq (2.5b) of
190 * arXiv:1311.1775 for \f$l=\mu\f$.
191 *
192 * This expression is equal to Eq. (51) of arXiv:hep-ph/0609168.
193 */
194Eigen::Array<std::complex<double>,2,1> c_R(const MSSMNoFV_onshell& model)
195{
196 return model.get_Ye(1, 1) * model.get_UM().col(1);
197}
198
199/**
200 * Calculates \f$\mathcal{A}^{c+}_{ii\tilde{\nu}_\mu} =
201 * |c^L_{i\tilde{\nu}_\mu}|^2 + |c^R_{i\tilde{\nu}_\mu}|^2\f$,
202 * Eqs (2.11b), (2.7a) in arXiv:1311.1775.
203 *
204 * This expression is identical to \f$|c^L_{im}|^2 + |c^R_{im}|^2\f$,
205 * which appears in Eq. (47) of arXiv:hep-ph/0609168.
206 */
207Eigen::Array<double,2,1> AAC(const MSSMNoFV_onshell& model)
208{
209 return c_L(model).cwiseAbs2() + c_R(model).cwiseAbs2();
210}
211
212/**
213 * Calculates \f$\mathcal{A}^{n+}_{ii\tilde{\mu}_m} =
214 * |n^L_{i\tilde{\mu}_m}|^2 + |n^R_{i\tilde{\mu}_m}|^2\f$,
215 * Eqs (2.11a), (2.7a) in arXiv:1311.1775.
216 *
217 * This expression is identical to \f$|n^L_{im}|^2 + |n^R_{im}|^2\f$,
218 * which appears in Eq. (46) of arXiv:hep-ph/0609168.
219 */
220Eigen::Array<double,4,2> AAN(const MSSMNoFV_onshell& model)
221{
222 return n_L(model).cwiseAbs2() + n_R(model).cwiseAbs2();
223}
224
225/**
226 * Calculates \f$\mathcal{B}^{c+}_{ii\tilde{\nu}_\mu} = 2 \text{Re}
227 * [(c^L_{i\tilde{\nu}_\mu})^* c^R_{i\tilde{\nu}_\mu}]\f$,
228 * Eqs (2.11b), (2.7b) in arXiv:1311.1775.
229 */
230Eigen::Array<double,2,1> BBC(const MSSMNoFV_onshell& model)
231{
232 return 2 * (c_L(model).conjugate() * c_R(model)).real();
233}
234
235/**
236 * Calculates \f$\mathcal{B}^{n+}_{ii\tilde{\mu}_m} = 2 \text{Re}
237 * [(n^L_{i\tilde{\mu}_m})^* n^R_{i\tilde{\mu}_m}]\f$, Eqs (2.11a),
238 * (2.7b) in arXiv:1311.1775.
239 */
240Eigen::Array<double,4,2> BBN(const MSSMNoFV_onshell& model)
241{
242 return 2 * (n_L(model).conjugate() * n_R(model)).real();
243}
244
245/**
246 * Calculates \f$x_{im} = m^2_{\chi_i^0} / m^2_{\tilde{\mu}_m}\f$,
247 * which appears in Eq (46) of arXiv:hep-ph/0609168.
248 */
249Eigen::Array<double,4,2> x_im(const MSSMNoFV_onshell& model)
250{
251 const Eigen::Matrix<double,4,1> m_chi(model.get_MChi());
252 const Eigen::Matrix<double,2,1> m_sm(model.get_MSm());
253
254 return (m_chi * m_sm.cwiseInverse().transpose()).array().square();
255}
256
257/**
258 * Calculates \f$x_k = m^2_{\chi_k^\pm} / m^2_{\tilde{\nu}_\mu}\f$,
259 * which appears in Eq (47) of arXiv:hep-ph/0609168.
260 */
261Eigen::Array<double,2,1> x_k(const MSSMNoFV_onshell& model)
262{
263 return (model.get_MCha() / model.get_MSvmL()).square();
264}
265
266// === approximations ===
267
268/**
269 * Calculates the 1-loop leading log approximation: Wino--Higgsino,
270 * muon-sneutrino, Eq (6.2a) arXiv:1311.1775
271 */
273{
274 const double tan_beta = model.get_TB();
275 const double M2 = model.get_MassWB();
276 const double mu = model.get_Mu();
277 const double msv_2 = model.get_MSvmL();
278
279 return sqr(model.get_g2()) * 2 * oneOver16PiSqr
280 * (sqr(model.get_MM()) * M2 * mu * tan_beta) / sqr(sqr(msv_2))
281 * Fa(sqr(M2 / msv_2), sqr(mu / msv_2));
282}
283
284/**
285 * Calculates the 1-loop leading log approximation: Wino--Higgsino,
286 * left-handed smuon, Eq (6.2b) arXiv:1311.1775
287 */
289{
290 const double tan_beta = model.get_TB();
291 const double M2 = model.get_MassWB();
292 const double mu = model.get_Mu();
293 const double msl_2 = std::sqrt(model.get_ml2(1, 1));
294
295 return - sqr(model.get_g2()) * oneOver16PiSqr
296 * (sqr(model.get_MM()) * M2 * mu * tan_beta) / sqr(sqr(msl_2))
297 * Fb(sqr(M2 / msl_2), sqr(mu / msl_2));
298}
299
300/**
301 * Calculates the 1-loop leading log approximation: Bino--Higgsino,
302 * left-handed smuon, Eq (6.2c) arXiv:1311.1775
303 */
305{
306 const double tan_beta = model.get_TB();
307 const double M1 = model.get_MassB();
308 const double mu = model.get_Mu();
309 const double msl_2 = std::sqrt(model.get_ml2(1, 1));
310 const double gY = model.get_gY();
311
312 return sqr(gY) * oneOver16PiSqr
313 * (sqr(model.get_MM()) * M1 * mu * tan_beta) / sqr(sqr(msl_2))
314 * Fb(sqr(M1 / msl_2), sqr(mu / msl_2));
315}
316
317/**
318 * Calculates the 1-loop leading log approximation: Bino--Higgsino,
319 * right-handed smuon, Eq (6.2d) arXiv:1311.1775
320 */
322{
323 const double tan_beta = model.get_TB();
324 const double M1 = model.get_MassB();
325 const double mu = model.get_Mu();
326 const double mse_2 = std::sqrt(model.get_me2(1, 1));
327 const double gY = model.get_gY();
328
329 return - sqr(gY) * 2 * oneOver16PiSqr
330 * (sqr(model.get_MM()) * M1 * mu * tan_beta) / sqr(sqr(mse_2))
331 * Fb(sqr(M1 / mse_2), sqr(mu / mse_2));
332}
333
334/**
335 * Calculates the 1-loop leading log approximation: Bino, left-handed
336 * smuon, right-handed smuon, Eq (6.2e) arXiv:1311.1775
337 */
339{
340 const double tan_beta = model.get_TB();
341 const double M1 = model.get_MassB();
342 const double mu = model.get_Mu();
343 const double msl_2 = std::sqrt(model.get_ml2(1, 1));
344 const double mse_2 = std::sqrt(model.get_me2(1, 1));
345 const double gY = model.get_gY();
346
347 if (is_zero(M1, eps)) {
348 return 0;
349 }
350
351 return sqr(gY) * 2 * oneOver16PiSqr
352 * (sqr(model.get_MM()) * mu * tan_beta) / (M1 * sqr(M1))
353 * Fb(sqr(msl_2 / M1), sqr(mse_2 / M1));
354}
355
356/**
357 * Calculates the full 1-loop leading log approximation, Eq (6.1)
358 * arXiv:1311.1775
359 * as it stands, without tan(beta) resummation
360 */
366
367/**
368 * Calculates the full 1-loop leading log approximation, Eq (6.1)
369 * arXiv:1311.1775
370 * but include tan(beta) resummation
371 */
376
377// tan(beta) corrections
378
379/**
380 * Calculates \f$\frac{1}{1 + \Delta_{\mu}}\f$
381 *
382 * @param model model parameters
383 *
384 * @return \f$\frac{1}{1 + \Delta_{\mu}}\f$
385 */
387{
388 const double delta_mu = delta_mu_correction(model);
389
390 return 1.0 / (1.0 + delta_mu);
391}
392
393/**
394 * Calculates \f$\Delta_{\ell}\f$ using a generalized form of Eq (8)
395 * arxiv:0808.1530.
396 *
397 * @param model model parameters
398 * @param gen lepton generation (0 = electron, 1 = muon, 2 = tau)
399 *
400 * @return \f$\Delta_{\ell}\f$
401 */
403{
404 const double mu = model.get_Mu();
405 const double tb = model.get_TB();
406 const double g2 = model.get_g2();
407 const double gY = model.get_gY();
408 const double M1 = model.get_MassB();
409 const double M2 = model.get_MassWB();
410 const double mw2 = sqr(model.get_MW());
411 const double mz2 = sqr(model.get_MZ());
412 const double sw = std::sqrt(1 - mw2/mz2);
413 const double sw2 = sw*sw;
414 const double x1 = sqr(M2) + sqr(mu) + 2*mw2;
415 const double x2 = abs_sqrt(sqr(x1) - sqr(2*M2*mu));
416 const double m1 = abs_sqrt(0.5*(x1 - x2));
417 const double m2 = abs_sqrt(0.5*(x1 + x2));
418 const double m_sneu_lep = abs_sqrt(model.get_ml2(gen, gen) - 0.5*mz2);
419 const double m_slep_L = abs_sqrt(model.get_ml2(gen, gen) - mz2*(sw2 - 0.5));
420 const double m_slep_R = abs_sqrt(model.get_me2(gen, gen) + mz2*sw2);
421
422 const double delta_lep =
423 - mu*tb*oneOver16PiSqr
424 *(+ sqr(g2)*M2*(Iabc(m1, m2, m_sneu_lep) + 0.5*Iabc(m1, m2, m_slep_L))
425 + sqr(gY)*M1*(Iabc(mu, M1, m_slep_R) - 0.5*Iabc(mu, M1, m_slep_L)
426 - Iabc(M1, m_slep_L, m_slep_R)));
427
428 return delta_lep;
429}
430
431/**
432 * Calculates \f$\Delta_{\mu}\f$ using delta_down_lepton_correction()
433 *
434 * @param model model parameters
435 *
436 * @return \f$\Delta_{\mu}\f$
437 */
442
443/**
444 * Calculates \f$\Delta_{\tau}\f$ using delta_down_lepton_correction()
445 *
446 * @param model model parameters
447 *
448 * @return \f$\Delta_{\tau}\f$
449 */
454
455/**
456 * Returns the \f$\Delta_b\f$ corrections from arxiv:0901.2065,
457 * Eq (103) and Eqs (31)-(35)
458 */
460{
461 const double tb = model.get_TB();
462 const double At = model.get_Au(2,2);
463 const double yt = model.get_Yu(2,2);
464 const double gY = model.get_gY();
465 const double g2 = model.get_g2();
466 const double alpha_S = sqr(model.get_g3()) / (4*Pi);
467 const double mu = model.get_Mu();
468 const double M1 = model.get_MassB();
469 const double M2 = model.get_MassWB();
470 const double M3 = model.get_MassG();
471 const double mstL = abs_sqrt(model.get_mq2(2,2));
472 const double mstR = abs_sqrt(model.get_mu2(2,2));
473 const double msbL = abs_sqrt(model.get_mq2(2,2));
474 const double msbR = abs_sqrt(model.get_md2(2,2));
475
476 // Note:
477 // 1/z^2 H_2(x^2/z^2, y^2/z^2) = - Iabc(x,y,z)
478
479 // Eq.(31)
480 const double eps_0 =
481 2/(3*Pi) * alpha_S * mu * M3
482 * Iabc(msbL, msbR, std::abs(M3))
483
484 - 1/(96*sqr(Pi)) * sqr(gY) * mu * M1
485 * (Iabc(msbL, std::abs(mu), std::abs(M1))
486 + 2 * Iabc(msbR, std::abs(mu), std::abs(M1)))
487
488 - 1/(144*sqr(Pi)) * sqr(gY) * mu * M1
489 * Iabc(msbL, msbR, std::abs(M1))
490
491 - 3/(32*sqr(Pi)) * sqr(g2) * mu * M2
492 * Iabc(msbL, std::abs(mu), std::abs(M2))
493 ;
494
495 const double Ittm = Iabc(mstL, mstR, std::abs(mu));
496
497 // Eq.(35), term ~ self-energy neglected
498 const double eps_Y_vM = - oneOver16PiSqr * At * mu * Ittm;
499
500 // Eq.(32)
501 const double eps_Y = oneOver16PiSqr * At * mu * Ittm + eps_Y_vM;
502
503 // Eq.(33)
504 const double eps_3_tilde = eps_0 + sqr(yt) * eps_Y;
505
506 // Eq.(103)
507 const double delta_b = tb * eps_3_tilde;
508
509 return delta_b;
510}
511
512} // namespace gm2calc
contains the MSSMNoFV parameters in the on-shell scheme
double mw2
squared W boson mass
double mz2
squared Z boson mass
double mu
double F1N(double x) noexcept
, Eq (52) arXiv:hep-ph/0609168
double amu1LBHmuL(const MSSMNoFV_onshell &model)
Calculates the 1-loop leading log approximation: Bino–Higgsino, left-handed smuon,...
double abs_sqrt(double x) noexcept
returns square root of absolute of number
T sqr(T x) noexcept
returns number squared
Eigen::Array< double, 2, 1 > x_k(const MSSMNoFV_onshell &model)
Calculates , which appears in Eq (47) of arXiv:hep-ph/0609168.
double amu1LBmuLmuR(const MSSMNoFV_onshell &model)
Calculates the 1-loop leading log approximation: Bino, left-handed smuon, right-handed smuon,...
double delta_bottom_correction(const MSSMNoFV_onshell &model)
Returns the corrections from arxiv:0901.2065, Eq (103) and Eqs (31)-(35)
double Fa(double x, double y) noexcept
, Eq (6.3a) arXiv:1311.1775
Eigen::Array< double, 2, 1 > BBC(const MSSMNoFV_onshell &model)
Calculates , Eqs (2.11b), (2.7b) in arXiv:1311.1775.
double amu1LBHmuR(const MSSMNoFV_onshell &model)
Calculates the 1-loop leading log approximation: Bino–Higgsino, right-handed smuon,...
Eigen::Array< std::complex< double >, 4, 2 > n_L(const MSSMNoFV_onshell &model)
Calculates , Eq (2.5o) of arXiv:1311.1775, for .
double delta_down_lepton_correction(const MSSMNoFV_onshell &model, int gen)
Calculates using a generalized form of Eq (8) arxiv:0808.1530.
double amu1LWHmuL(const MSSMNoFV_onshell &model)
Calculates the 1-loop leading log approximation: Wino–Higgsino, left-handed smuon,...
void svd_eigen(const Eigen::Matrix< Scalar, M, N > &m, Eigen::Array< Real,(((M)<(N)) ?(M) :(N)), 1 > &s, Eigen::Matrix< Scalar, M, M > *u, Eigen::Matrix< Scalar, N, N > *vh)
double F2N(double x) noexcept
, Eq (53) arXiv:hep-ph/0609168
bool is_zero(const Eigen::ArrayBase< Derived > &a, double eps)
double Iabc(double a, double b, double c) noexcept
(arguments are interpreted as unsquared)
double amu1Lapprox(const MSSMNoFV_onshell &model)
Calculates the full 1-loop leading log approximation, Eq (6.1) arXiv:1311.1775 but include tan(beta) ...
double delta_tau_correction(const MSSMNoFV_onshell &model)
Calculates using delta_down_lepton_correction()
Eigen::Array< double, 4, 2 > x_im(const MSSMNoFV_onshell &model)
Calculates , which appears in Eq (46) of arXiv:hep-ph/0609168.
double Fb(double x, double y) noexcept
, Eq (6.3b) arXiv:1311.1775
double F1C(double x) noexcept
, Eq (54) arXiv:hep-ph/0609168
Eigen::Array< double, 4, 2 > BBN(const MSSMNoFV_onshell &model)
Calculates , Eqs (2.11a), (2.7b) in arXiv:1311.1775.
double calculate_amu_1loop(const MSSMNoFV_onshell &model)
Calculates full 1-loop SUSY contribution to (g-2), Eq (45) of arXiv:hep-ph/0609168.
Definition gm2_1loop.cpp:74
double F2C(double x) noexcept
, Eq (55) arXiv:hep-ph/0609168
Eigen::Array< std::complex< double >, 2, 1 > c_L(const MSSMNoFV_onshell &model)
Calculates , Eq (2.5a) of arXiv:1311.1775 for .
double amu1LChipm(const MSSMNoFV_onshell &model)
Calculates 1-loop chargino contribution to (g-2), Eq (2.11b) of arXiv:1311.1775.
Eigen::Array< std::complex< double >, 4, 2 > n_R(const MSSMNoFV_onshell &model)
Calculates , Eq (2.5p) of arXiv:1311.1775, with .
double amu1LWHnu(const MSSMNoFV_onshell &model)
Calculates the 1-loop leading log approximation: Wino–Higgsino, muon-sneutrino, Eq (6....
double amu1LChi0(const MSSMNoFV_onshell &model)
Calculates 1-loop neutralino contribution to (g-2), Eq (2.11a) of arXiv:1311.1775.
Definition gm2_1loop.cpp:83
Eigen::Array< std::complex< double >, 2, 1 > c_R(const MSSMNoFV_onshell &model)
Calculates , Eq (2.5b) of arXiv:1311.1775 for .
double tan_beta_cor(const MSSMNoFV_onshell &model)
Calculates .
Eigen::Array< double, 4, 2 > AAN(const MSSMNoFV_onshell &model)
Calculates , Eqs (2.11a), (2.7a) in arXiv:1311.1775.
double delta_mu_correction(const MSSMNoFV_onshell &model)
Calculates using delta_down_lepton_correction()
double amu1Lapprox_non_tan_beta_resummed(const MSSMNoFV_onshell &model)
Calculates the full 1-loop leading log approximation, Eq (6.1) arXiv:1311.1775 as it stands,...
double calculate_amu_1loop_non_tan_beta_resummed(const MSSMNoFV_onshell &model)
Calculates full 1-loop SUSY contribution to (g-2), Eq (45) of arXiv:hep-ph/0609168.
Definition gm2_1loop.cpp:57
Eigen::Array< double, 2, 1 > AAC(const MSSMNoFV_onshell &model)
Calculates , Eqs (2.11b), (2.7a) in arXiv:1311.1775.